cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049569 Primes p such that x^37 = 2 has a solution mod p.

This page as a plain text file.
%I A049569 #20 Sep 08 2022 08:44:58
%S A049569 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,
%T A049569 97,101,103,107,109,113,127,131,137,139,151,157,163,167,173,179,181,
%U A049569 191,193,197,199,211,227,229,233,239,241,251,257,263,269,271,277,281
%N A049569 Primes p such that x^37 = 2 has a solution mod p.
%C A049569 Complement of A059223 relative to A000040. - _Vincenzo Librandi_, Sep 14 2012
%H A049569 R. J. Mathar, <a href="/A049569/b049569.txt">Table of n, a(n) for n = 1..1000</a>
%H A049569 <a href="/index/Pri#smp">Index entries for related sequences</a>
%t A049569 ok[p_]:= Reduce[Mod[x^37 - 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[100]], ok] (* _Vincenzo Librandi_, Sep 14 2012 *)
%o A049569 (Magma) [p: p in PrimesUpTo(300) | exists(t){x : x in ResidueClassRing(p) | x^37 eq 2}]; // _Vincenzo Librandi_, Sep 14 2012
%o A049569 (PARI)
%o A049569 N=10^4;  default(primelimit,N);
%o A049569 ok(p, r, k)={ return ( (p==r) || (Mod(r,p)^((p-1)/gcd(k,p-1))==1) ); }
%o A049569 forprime(p=2,N, if (ok(p,2,37),print1(p,", ")));
%o A049569 /* _Joerg Arndt_, Sep 21 2012 */
%Y A049569 Cf. A000040, A059223.
%K A049569 nonn,easy
%O A049569 1,1
%A A049569 _N. J. A. Sloane_