This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A049569 #20 Sep 08 2022 08:44:58 %S A049569 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89, %T A049569 97,101,103,107,109,113,127,131,137,139,151,157,163,167,173,179,181, %U A049569 191,193,197,199,211,227,229,233,239,241,251,257,263,269,271,277,281 %N A049569 Primes p such that x^37 = 2 has a solution mod p. %C A049569 Complement of A059223 relative to A000040. - _Vincenzo Librandi_, Sep 14 2012 %H A049569 R. J. Mathar, <a href="/A049569/b049569.txt">Table of n, a(n) for n = 1..1000</a> %H A049569 <a href="/index/Pri#smp">Index entries for related sequences</a> %t A049569 ok[p_]:= Reduce[Mod[x^37 - 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[100]], ok] (* _Vincenzo Librandi_, Sep 14 2012 *) %o A049569 (Magma) [p: p in PrimesUpTo(300) | exists(t){x : x in ResidueClassRing(p) | x^37 eq 2}]; // _Vincenzo Librandi_, Sep 14 2012 %o A049569 (PARI) %o A049569 N=10^4; default(primelimit,N); %o A049569 ok(p, r, k)={ return ( (p==r) || (Mod(r,p)^((p-1)/gcd(k,p-1))==1) ); } %o A049569 forprime(p=2,N, if (ok(p,2,37),print1(p,", "))); %o A049569 /* _Joerg Arndt_, Sep 21 2012 */ %Y A049569 Cf. A000040, A059223. %K A049569 nonn,easy %O A049569 1,1 %A A049569 _N. J. A. Sloane_