cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049596 Primes p such that x^9 = 2 has a solution mod p.

This page as a plain text file.
%I A049596 #17 Jul 20 2025 11:06:55
%S A049596 2,3,5,11,17,23,29,31,41,43,47,53,59,71,83,89,101,107,113,127,131,137,
%T A049596 149,157,167,173,179,191,197,223,227,229,233,239,251,257,263,269,277,
%U A049596 281,283,293,311,317,347,353,359,383,389,397,401,419,431,439,443,449
%N A049596 Primes p such that x^9 = 2 has a solution mod p.
%C A049596 Coincides with sequence of "primes p such that x^27 = 2 has a solution mod p" for first 339 terms, then diverges.
%C A049596 Complement of A059262 relative to A000040. - _Vincenzo Librandi_, Sep 15 2012
%H A049596 R. J. Mathar, <a href="/A049596/b049596.txt">Table of n, a(n) for n = 1..1000</a>
%H A049596 <a href="/index/Pri#smp">Index entries for related sequences</a>
%e A049596 0^9 == 2 (mod 2). 2^9 == 2 (mod 3). 2^9 == 2 (mod 5). 6^9 == 2 (mod 11). 2^9 == 2 (mod 17). 9^9 == 2 (mod 23). 11^9 == 2 (mod 29). 16^9 == 2 (mod 31). 20^9 == 2 (mod 41). 26^9 == 2 (mod 43). - _R. J. Mathar_, Jul 20 2025
%t A049596 ok[p_]:= Reduce[Mod[x^9 - 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[100]], ok] (* _Vincenzo Librandi_, Sep 15 2012 *)
%o A049596 (Magma) [p: p in PrimesUpTo(500) | exists(t){x : x in ResidueClassRing(p) | x^9 eq 2}]; // _Vincenzo Librandi_, Sep 15 2012
%Y A049596 Cf. A000040, A001132, A059262.
%K A049596 nonn,easy
%O A049596 1,1
%A A049596 _N. J. A. Sloane_