This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A049615 #29 Aug 29 2024 16:00:08 %S A049615 0,0,0,1,0,1,2,1,1,2,3,2,3,2,3,4,3,4,4,3,4,5,4,6,6,6,4,5,6,5,7,8,8,7, %T A049615 5,6,7,6,9,9,11,9,9,6,7,8,7,10,12,12,12,12,10,7,8,9,8,12,13,16,14,16, %U A049615 13,12,8,9,10,9,13,15,17,18,18,17,15,13,9,10 %N A049615 Array T by antidiagonals; T(i,j) = number of lattice points (x,y) hidden from (i,j), where 0<=x<=i, 0<=y<=j; (x,y) is hidden if there is a lattice point (h,k) collinear with and between (x,y) and (i,j). %C A049615 From _Robert Israel_, Jun 25 2015: (Start) %C A049615 T(i,j) = number of (x,y) with 1 <= x <= i, 1 <= y <= j and gcd(x,y) > 1. %C A049615 T(n,n) - T(n-1,n) = A062830(n) for x >= 2. %C A049615 T(m+1,n+1) - T(m+1,n) - T(m,n+1) + T(m,n) = 1 if gcd(m+1,n+1) > 1, 0 otherwise. (End) %H A049615 Ivan Neretin, <a href="/A049615/b049615.txt">Table of n, a(n) for n = 0..5049</a> %e A049615 Antidiagonals (each starting on row 0): %e A049615 {0}; %e A049615 {0,0}; %e A049615 {1,0,1}; %e A049615 ... %e A049615 Array begins: %e A049615 0 0 1 2 3 4 5 %e A049615 0 0 1 2 3 4 5 %e A049615 1 1 3 4 6 7 9 %e A049615 2 2 4 6 8 9 12 %e A049615 3 3 6 8 11 12 16 %e A049615 4 4 7 9 12 14 18 %e A049615 5 5 9 12 16 18 23 %e A049615 ... %p A049615 N := 20: # to get the first N*(N+1)/2 terms %p A049615 T:= Array(1..N+1,1..N+1): %p A049615 B:= Array(1..N+1,1..N+1, (i,j) -> `if`(igcd(i-1,j-1)>1,1,0)): %p A049615 T[1,1..N+1]:= Statistics:-CumulativeSum(B[1,1..N+1]): %p A049615 for i from 2 to N+1 do %p A049615 T[i,1..N+1]:= T[i-1,1..N+1] + Statistics:-CumulativeSum(B[i,1..N+1]) %p A049615 od: %p A049615 seq(seq(round(T[i+1,t-i+1]),i=0..t),t=0..N); # _Robert Israel_, Jun 25 2015 %p A049615 # alternative program _R. J. Mathar_, Oct 26 2015 %p A049615 A049615 := proc(n,k) %p A049615 local a,x,y; %p A049615 a := 0 ; %p A049615 for x from 0 to n do %p A049615 for y from 0 to k do %p A049615 if igcd(x,y) > 1 then %p A049615 a := a+1 ; %p A049615 end if; %p A049615 end do: %p A049615 end do: %p A049615 a; %p A049615 end proc: %p A049615 seq(seq(A049615(d-k,k),k=0..d),d=0..10) ; %t A049615 Table[Length[Select[Flatten[Table[{x, y}, {x, 0, n - k}, {y, 0, k}], 1], GCD @@ # > 1 &]], {n, 0, 11}, {k, 0, n}] // Flatten (* _Ivan Neretin_, Jun 25 2015 *) %o A049615 (PARI) T(n,k) = sum(i=0, n, sum(j=0, k, gcd(i,j)>1)); %o A049615 tabl(7, 7, n, k, T(n-1, k-1)) \\ _Michel Marcus_, Aug 06 2021 %Y A049615 Cf. A032766, A062830. %K A049615 nonn,tabl %O A049615 0,7 %A A049615 _Clark Kimberling_