This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A049679 #22 Sep 08 2022 08:44:58 %S A049679 6,281,13201,620166,29134601,1368706081,64300051206,3020733700601, %T A049679 141910183877041,6666757908520326,313195711516578281, %U A049679 14713531683370658881,691222793406904389126,32472757758441135630041,1525528391853326470222801,71667361659347902964841606 %N A049679 a(n) = (F(8*n+7)+F(8*n+5))/3, where F=A000045 (the Fibonacci sequence). %H A049679 Colin Barker, <a href="/A049679/b049679.txt">Table of n, a(n) for n = 0..500</a> %H A049679 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A049679 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (47,-1). %F A049679 From _Philippe Deléham_, Nov 18 2008: (Start) %F A049679 a(n) = 47*a(n-1) - a(n-2), a(0)=6, a(1)=281. %F A049679 G.f.: (6-x)/(1-47*x+x^2). (End) %F A049679 a(n) = (((5+3*sqrt(5))*(2/(47+21*sqrt(5)))^n + (1/2*(47+21*sqrt(5)))^n*(1885+843*sqrt(5))))/(315+141*sqrt(5)). - _Colin Barker_, May 05 2016 %t A049679 LinearRecurrence[{47,-1},{6,281},20] (* _Harvey P. Dale_, Dec 14 2014 *) %t A049679 Table[(Fibonacci[8*n+7]+Fibonacci[8*n+5])/3, {n,0,30}] (* _G. C. Greubel_, Dec 02 2017 *) %o A049679 (PARI) Vec((6-x)/(1-47*x+x^2) + O(x^20)) \\ _Colin Barker_, May 05 2016 %o A049679 (Magma) [(Fibonacci(8*n+7) + Fibonacci(8*n+5))/3: n in [0..30]]; // _G. C. Greubel_, Dec 02 2017 %o A049679 (PARI) for(n=0,30, print1((fibonacci(8*n+7) + fibonacci(8*n+5))/3, ", ")) \\ _G. C. Greubel_, Dec 02 2017 %K A049679 nonn,easy %O A049679 0,1 %A A049679 _Clark Kimberling_ %E A049679 Corrected and extended by _T. D. Noe_, Nov 07 2006