cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049691 a(n)=T(n,n), array T as in A049687. Also a(n)=T(2n,2n), array T given by A049639.

This page as a plain text file.
%I A049691 #70 Aug 04 2024 20:06:55
%S A049691 0,3,5,9,13,21,25,37,45,57,65,85,93,117,129,145,161,193,205,241,257,
%T A049691 281,301,345,361,401,425,461,485,541,557,617,649,689,721,769,793,865,
%U A049691 901,949,981,1061,1085,1169,1209,1257,1301,1393,1425,1509,1549
%N A049691 a(n)=T(n,n), array T as in A049687. Also a(n)=T(2n,2n), array T given by A049639.
%C A049691 a(n) is related to the sequence b(n) = |{(x, y): gcd(x, y) = 1, 1<=x, y<=n}| (A018805) as follows: a(n) = b(n - 1) + 2 (for n > 1). - Shawn Westmoreland (westmore(AT)math.utexas.edu), Jun 11 2003
%C A049691 Comment from _N. J. A. Sloane_, Sep 08 2019 (Start)
%C A049691 The above comment can be rephrased as saying that a(n) is the cardinality of the subsequence F(B(2n),n) of the Farey series F_{2n} that is extensively studied in Matveev (2017). See the definition on page 1.
%C A049691 For example, F(B(2),1), F(B(4),2), F(B(6),3), and F(B(8),4) are:
%C A049691   [0, 1/2, 1],
%C A049691   [0, 1/3, 1/2, 2/3, 1],
%C A049691   [0, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 1],
%C A049691   [0, 1/5, 1/4, 1/3, 2/5, 3/7, 1/2, 4/7, 3/5, 2/3, 3/4, 4/5, 1],
%C A049691 of cardinalities 3,5,9,13 respectively. See also A324796/A324797. (End)
%C A049691 a(n) is the number of visible points on an n X n square lattice when viewed from (0, 0), (0, n), (n, 0), or (n, n). - _Torlach Rush_, Nov 16 2020
%C A049691 Also number of elements in { c/d ; -d <= c <= d <= n }, i.e., distinct fractions with denominator not exceeding n and absolute value of numerator not exceeding the denominator. - _M. F. Hasler_, Mar 26 2023
%D A049691 A. O. Matveev, Farey Sequences, De Gruyter, 2017.
%H A049691 Andrew Howroyd, <a href="/A049691/b049691.txt">Table of n, a(n) for n = 0..1000</a>
%H A049691 A. O. Matveev, <a href="https://github.com/andreyomatveev/farey-sequences">Farey Sequences: Errata + Haskell code</a>
%H A049691 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/VisiblePoint.html">Visible Point</a>
%F A049691 a(n) = A206297(n+1) = 2 + A018805(n) for n > 0. - _Andrew Howroyd_, Sep 17 2017
%F A049691 a(n) = 1 + 2 * Sum{k=1..n} A000010(k), n > 0. - _Torlach Rush_, Nov 24 2020
%p A049691 Farey := proc(n) sort(convert(`union`({0}, {seq(seq(m/k, m=1..k), k=1..n)}), list)) end: # A006842/A006843
%p A049691 BF := proc(m) local a,i,h,k; global Farey; a:=[];
%p A049691 for i in Farey(2*m) do h:=numer(i); k:=denom(i);
%p A049691 if (h <= m) and (k-m <= h) then a:=[op(a),i]; fi; od: a; end;
%p A049691 [seq(nops(BF(m),m=1..20)]; # this sequence - _N. J. A. Sloane_, Sep 08 2019
%t A049691 a[0] = 0; a[n_] := 2 + Sum[Quotient[n, g]^2*MoebiusMu[g], {g, 1, n}]; Table[a[n], {n, 0, 50}] (* _Jean-François Alcover_, Oct 07 2017, translated from PARI *)
%o A049691 (PARI) a(n) = if(n>0, 2, 0) + sum(g=1, n, (n\g)^2 * moebius(g)); \\ _Andrew Howroyd_, Sep 17 2017
%o A049691 (PARI) a(n) = if(n>0, 1, 0) + 2 * sum(k=1, n, eulerphi(k)); \\ _Torlach Rush_, Nov 24 2020
%o A049691 (PARI) a(n)=#Set(concat([[c/d|c<-[-d..d],d]|d<-[0..n]])) \\ For illustrative purpose only! - _M. F. Hasler_, Mar 26 2023
%o A049691 (Python)
%o A049691 from functools import lru_cache
%o A049691 @lru_cache(maxsize=None)
%o A049691 def A049691(n):
%o A049691     if n == 0:
%o A049691         return 0
%o A049691     c, j = 1, 2
%o A049691     k1 = n//j
%o A049691     while k1 > 1:
%o A049691         j2 = n//k1 + 1
%o A049691         c += (j2-j)*(A049691(k1)-2)
%o A049691         j, k1 = j2, n//j2
%o A049691     return n*(n-1)-c+j+2 # _Chai Wah Wu_, Aug 04 2024
%Y A049691 Cf. A000010, A018805, A049687, A324796, A324797.
%Y A049691 A206297 is an essentially identical sequence.
%K A049691 nonn
%O A049691 0,2
%A A049691 _Clark Kimberling_
%E A049691 Terms a(41) and beyond from _Andrew Howroyd_, Sep 17 2017