This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A049770 #12 Sep 08 2022 08:44:58 %S A049770 0,1,4,5,14,16,30,23,38,57,80,78,112,125,146,128,212,179,258,244,303, %T A049770 316,375,315,330,485,387,496,578,538,683,616,748,806,846,750,965,1033, %U A049770 1085,1035,1233,1136,1359,1316,1328,1507,1583 %N A049770 a(n) = Sum_{k=1..n} T(n,k), array T as in A049769. %H A049770 G. C. Greubel, <a href="/A049770/b049770.txt">Table of n, a(n) for n = 1..1000</a> %p A049770 seq( add( `mod`(k^3, n) + `mod`(n^3, k), k = 1..n), n = 1..50); # _G. C. Greubel_, Dec 13 2019 %t A049770 Table[Sum[PowerMod[k,3,n] + PowerMod[n,3,k], {k,n}], {n,50}] (* _G. C. Greubel_, Dec 13 2019 *) %o A049770 (PARI) T(n,k) = lift(Mod(k,n)^3) + lift(Mod(n,k)^3); %o A049770 vector(50, n, sum(k=1,n, T(n,k)) ) \\ _G. C. Greubel_, Dec 13 2019 %o A049770 (Magma) [&+[Modexp(k,3,n) + Modexp(n,3,k): k in [1..n]]: n in [1..50]]; // _G. C. Greubel_, Dec 13 2019 %o A049770 (Sage) [sum(power_mod(k,3,n) + power_mod(n,3,k) for k in (1..n)) for n in (1..50)] # _G. C. Greubel_, Dec 13 2019 %o A049770 (GAP) List([1..50], n-> Sum([1..n], k-> PowerMod(k,3,n) + PowerMod(n,3,k)) ); # _G. C. Greubel_, Dec 13 2019 %Y A049770 Row sums of A049769. %K A049770 nonn %O A049770 1,3 %A A049770 _Clark Kimberling_