This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A049933 #24 May 06 2022 13:11:36 %S A049933 1,1,1,4,8,19,35,70,140,349,663,1310,2609,5214,10425,20850,41700, %T A049933 104249,198073,390935,779265,1557231,3113815,6227316,12454423, %U A049933 24908776,49817517,99635018,199270025,398540046,797080089,1594160178,3188320356,7970800889,15144521689 %N A049933 a(n) = a(1) + a(2) + ... + a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = a(3) = 1. %F A049933 From _Petros Hadjicostas_, Nov 06 2019: (Start) %F A049933 a(n) = a(2^ceiling(log_2(n-1)) + 2 - n) + Sum_{i = 1..n-1} a(i) for n >= 4. %F A049933 a(n) = a(n - 1 - A006257(n-2)) + Sum_{i = 1..n-1} a(i) for n >= 4. (End) %e A049933 From _Petros Hadjicostas_, Nov 06 2019: (Start) %e A049933 a(4) = a(2^ceiling(log_2(4-1)) + 2 - 4) + a(1) + a(2) + a(3) = a(2) + a(1) + a(2) + a(3) = 4. %e A049933 a(5) = a(2^ceiling(log_2(5-1)) + 2 - 5) + a(1) + a(2) + a(3) + a(4) = a(1) + a(1) + a(2) + a(3) + a(4) = 8. %e A049933 a(6) = a(2^ceiling(log_2(6-1)) + 2 - 6) + a(1) + a(2) + a(3) + a(4) + a(5) = a(4) + a(1) + a(2) + a(3) + a(4) + a(5) = 19. %e A049933 a(7) = a(7 - 1 - A006257(7-2)) + Sum_{i = 1..6} a(i) = a(3) + Sum_{i = 1..6} a(i) = 35. %e A049933 a(8) = a(8 - 1 - A006257(8-2)) + Sum_{i = 1..7} a(i) = a(2) + Sum_{i = 1..7} a(i) = 70. (End) %p A049933 s := proc(n) option remember; `if`(n < 1, 0, a(n) + s(n - 1)); end proc; %p A049933 a := proc(n) option remember; %p A049933 `if`(n < 4, 1, s(n - 1) + a(Bits:-Iff(n - 2, n - 2) + 3 - n)); %p A049933 end proc; %p A049933 seq(a(n), n = 1 .. 30); %t A049933 b[n_] := Module[{p}, For[p = 0, True, p++, If[2^p < n - 1 <= 2^(p + 1), Return[p]]]]; %t A049933 a[n_] := a[n] = If[n < 4, 1, With[{m = 2^(b[n] + 1) + 2 - n}, Total[ Array[a, n - 1]] + a[m]]]; %t A049933 Array[a, 35] (* _Jean-François Alcover_, Apr 24 2020 *) %Y A049933 Cf. A006257, A049885 (similar, but with minus a(m)), A049937, A049945. %K A049933 nonn %O A049933 1,4 %A A049933 _Clark Kimberling_ %E A049933 Name edited by and more terms from _Petros Hadjicostas_, Nov 06 2019