This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A049937 #16 Nov 07 2019 05:11:48 %S A049937 1,1,2,5,10,24,45,89,178,444,844,1667,3320,6635,13267,26533,53066, %T A049937 132664,252062,497492,991669,1981685,3962547,7924694,15849122, %U A049937 31698155,63396266,126792511,253585008,507170011,1014340019,2028680037,4057360074,10143400184,19272460350,38037750692 %N A049937 a(n) = a(1) + a(2) + ... + a(n-1) + a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 2. %F A049937 From _Petros Hadjicostas_, Nov 06 2019: (Start) %F A049937 a(n) = a(2^ceiling(log_2(n-1)) + 2 - n) + Sum_{i = 1..n-1} a(i) for n >= 4. %F A049937 a(n) = a(n - 1 - A006257(n-2)) + Sum_{i = 1..n-1} a(i) for n >= 4. (End) %e A049937 From _Petros Hadjicostas_, Nov 06 2019: (Start) %e A049937 a(4) = a(2^ceiling(log_2(4-1)) + 2 - 4) + a(1) + a(2) + a(3) = a(2) + a(1) + a(2) + a(3) = 5. %e A049937 a(5) = a(2^ceiling(log_2(5-1)) + 2 - 5) + a(1) + a(2) + a(3) + a(4) = a(1) + a(1) + a(2) + a(3) + a(4) = 10. %e A049937 a(6) = a(2^ceiling(log_2(6-1)) + 2 - 6) + a(1) + a(2) + a(3) + a(4) + a(5) = a(4) + a(1) + a(2) + a(3) + a(4) + a(5) = 24. %e A049937 a(7) = a(7 - 1 - A006257(7-2)) + Sum_{i = 1..6} a(i) = a(3) + Sum_{i = 1..6} a(i) = 45. %e A049937 a(8) = a(8 - 1 - A006257(8-2)) + Sum_{i = 1..7} a(i) = a(2) + Sum_{i = 1..7} a(i) = 89. (End) %p A049937 s := proc(n) option remember; `if`(n < 1, 0, a(n) + s(n - 1)); end proc; %p A049937 a := proc(n) option remember; %p A049937 `if`(n < 3, 1, `if`(n < 4, 2, s(n - 1) + a(Bits:-Iff(n - 2, n - 2) + 3 - n))); %p A049937 end proc; %p A049937 seq(a(n), n = 1 .. 30); # _Petros Hadjicostas_, Nov 06 2019 %Y A049937 Cf. A006257, A049933, A049945. %K A049937 nonn %O A049937 1,3 %A A049937 _Clark Kimberling_ %E A049937 Name edited by and more terms from _Petros Hadjicostas_, Nov 06 2019