cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049980 a(n) is the number of arithmetic progressions of positive integers, strictly increasing with sum n.

This page as a plain text file.
%I A049980 #80 Feb 14 2021 09:01:02
%S A049980 1,1,2,2,3,4,4,4,7,6,6,9,7,8,13,9,9,15,10,12,18,13,12,20,15,15,23,17,
%T A049980 15,28,16,18,28,20,22,33,19,22,33,26,21,39,22,26,43,27,24,43,27,33,44,
%U A049980 31,27,50,34,34,49,34,30,60,31,36,57,38,40
%N A049980 a(n) is the number of arithmetic progressions of positive integers, strictly increasing with sum n.
%C A049980 We need to find the number of pairs of positive integers (b, w) so that there is a positive integer m such that m*b + m*(m-1)*w/2 = n. - _Petros Hadjicostas_, Sep 27 2019
%H A049980 Fausto A. C. Cariboni, <a href="/A049980/b049980.txt">Table of n, a(n) for n = 1..10000</a>
%H A049980 Sadek Bouroubi and Nesrine Benyahia Tani, <a href="http://ftp.math.uni-rostock.de/pub/romako/heft64/bou64.pdf">Integer partitions into arithmetic progressions</a>, Rostok. Math. Kolloq. 64 (2009), 11-16.
%H A049980 Sadek Bouroubi and Nesrine Benyahia Tani, <a href="https://www.emis.de/journals/INTEGERS/papers/j7/j7.Abstract.html">Integer partitions into arithmetic progressions with an odd common difference</a>, Integers 9(1) (2009), 77-81.
%H A049980 Graeme McRae, <a href="https://web.archive.org/web/20081122034835/http://2000clicks.com/MathHelp/BasicSequenceA049982.htm">Counting arithmetic sequences whose sum is n</a>.
%H A049980 Graeme McRae, <a href="/A049988/a049988.pdf">Counting arithmetic sequences whose sum is n</a> [Cached copy]
%H A049980 Augustine O. Munagi, <a href="https://www.emis.de/journals/INTEGERS/papers/k7/k7.Abstract.html">Combinatorics of integer partitions in arithmetic progression</a>, Integers 10(1) (2010), 73-82.
%H A049980 Augustine O. Munagi and Temba Shonhiwa, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL11/Shonhiwa/shonhiwa13.html">On the partitions of a number into arithmetic progressions</a>, Journal of Integer Sequences 11 (2008), Article 08.5.4.
%H A049980 A. N. Pacheco Pulido, <a href="http://www.bdigital.unal.edu.co/7753/">Extensiones lineales de un poset y composiciones de números multipartitos</a>, Maestría thesis, Universidad Nacional de Colombia, 2012.
%F A049980 Conjecture: a(n) = 1 + Sum_{m|n, m odd > 1} floor(2 * (n - m)/(m* (m - 1))) + Sum_{m|n} floor((n - m * (5 - (-1)^(n/m))/2 + m^2 * (1 - (-1)^(n/m)))/(2*m * (2*m - 1))). - _Petros Hadjicostas_, Sep 27 2019
%F A049980 G.f.: x/(1-x) + Sum_{k >= 2} x^t(k)/(x^t(k) - x^t(k-1) - x^k + 1) = x/(1-x) + Sum_{k >= 2} x^t(k)/((1 - x^k) * (1 - x^t(k-1))), where t(k) = k*(k+1)/2 = A000217(k) is the k-th triangular number [_Graeme McRae_]. - _Petros Hadjicostas_, Sep 29 2019
%e A049980 a(6) = 4 because we have the following strictly increasing arithmetic progressions of positive integers adding up to n = 6: 6, 1+5, 2+4, and 1+2+3. - _Petros Hadjicostas_, Sep 27 2019
%Y A049980 Cf. A000217, A014405, A014406, A049981, A049982, A049983, A049986, A049987, A068322, A068323, A068324, A127938, A175342.
%K A049980 nonn
%O A049980 1,3
%A A049980 _Clark Kimberling_