This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A049981 #61 Oct 01 2019 07:18:39 %S A049981 1,2,4,6,9,13,17,21,28,34,40,49,56,64,77,86,95,110,120,132,150,163, %T A049981 175,195,210,225,248,265,280,308,324,342,370,390,412,445,464,486,519, %U A049981 545,566,605,627,653,696,723,747,790,817,850,894,925,952,1002,1036,1070,1119,1153,1183,1243,1274,1310 %N A049981 a(n) is the number of arithmetic progressions of positive integers, strictly increasing with sum <= n. %H A049981 Sadek Bouroubi and Nesrine Benyahia Tani, <a href="http://ftp.math.uni-rostock.de/pub/romako/heft64/bou64.pdf">Integer partitions into arithmetic progressions</a>, Rostok. Math. Kolloq. 64 (2009), 11-16. %H A049981 Sadek Bouroubi and Nesrine Benyahia Tani, <a href="https://www.emis.de/journals/INTEGERS/papers/j7/j7.Abstract.html">Integer partitions into arithmetic progressions with an odd common difference</a>, Integers 9(1) (2009), 77-81. %H A049981 Graeme McRae, <a href="https://web.archive.org/web/20081122034835/http://2000clicks.com/MathHelp/BasicSequenceA049982.htm">Counting arithmetic sequences whose sum is n</a>. %H A049981 Graeme McRae, <a href="/A049988/a049988.pdf">Counting arithmetic sequences whose sum is n</a> [Cached copy] %H A049981 Augustine O. Munagi, <a href="http://www.emis.de/journals/INTEGERS/papers/k7/k7.Abstract.html">Combinatorics of integer partitions in arithmetic progression</a>, Integers 10(1) (2010), 73-82. %H A049981 Augustine O. Munagi and Temba Shonhiwa, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL11/Shonhiwa/shonhiwa13.html">On the partitions of a number into arithmetic progressions</a>, Journal of Integer Sequences 11 (2008), Article 08.5.4. %H A049981 A. N. Pacheco Pulido, <a href="http://www.bdigital.unal.edu.co/7753/">Extensiones lineales de un poset y composiciones de números multipartitos</a>, Maestría thesis, Universidad Nacional de Colombia, 2012. %F A049981 From _Petros Hadjicostas_, Sep 29 2019: (Start) %F A049981 a(n) = Sum_{k = 1..n} A049980(k) = n + Sum_{k = 1..n} A049982(k). %F A049981 G.f.: (g.f. of A049980)/(1-x). (End) %Y A049981 Cf. A014405, A014406, A049980, A049982, A049983, A049986, A049987, A068322, A068323, A068324, A127938, A175342. %K A049981 nonn %O A049981 1,2 %A A049981 _Clark Kimberling_ %E A049981 More terms from _Petros Hadjicostas_, Sep 29 2019