cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049988 Number of nondecreasing arithmetic progressions of positive integers with sum n.

This page as a plain text file.
%I A049988 #103 Jul 19 2023 14:15:46
%S A049988 1,1,2,3,4,4,7,5,7,9,9,7,14,8,11,16,13,10,20,11,17,21,16,13,27,17,18,
%T A049988 26,22,16,35,17,23,31,23,25,41,20,25,36,33,22,46,23,31,48,30,25,52,29,
%U A049988 38,47,36,28,57,37,41,52,37,31,71,32,39,62,44,43,69,35,45,62,57,37,79,38
%N A049988 Number of nondecreasing arithmetic progressions of positive integers with sum n.
%C A049988 From _Gus Wiseman_, May 03 2019: (Start)
%C A049988 a(n) is the number of integer partitions of n with equal differences. The Heinz numbers of these partitions are given by A325328. For example, the a(1) = 1 through a(9) = 9 partitions are:
%C A049988   1   2    3     4      5       6        7         8          9
%C A049988       11   21    22     32      33       43        44         54
%C A049988            111   31     41      42       52        53         63
%C A049988                  1111   11111   51       61        62         72
%C A049988                                 222      1111111   71         81
%C A049988                                 321                2222       333
%C A049988                                 111111             11111111   432
%C A049988                                                               531
%C A049988                                                               111111111
%C A049988 (End)
%C A049988 From _Petros Hadjicostas_, Sep 29 2019: (Start)
%C A049988 We show how _Leroy Quet_'s g.f. Sum_{n >= 0} a(n)*x^n = 1/(1-x) + Sum_{k >= 2} x^k/(1-x^(k*(k-1)/2))/(1-x^k) in the Formula section below can be derived from _Graeme McRae_'s g.f. for A049982 (see one of the links below).
%C A049988 Let b(n) = A049982(n) for n >= 1. Then _Graeme McRae_ proved that Sum_{n >= 1} b(n)*x^n = Sum_{k >= 2} x^t(k)/(x^t(k) - x^t(k-1) - x^k + 1) = Sum_{k >= 2} x^t(k)/((1 - x^k) * (1 - x^t(k-1))), where t(k) = A000217(k) = k*(k+1)/2.
%C A049988 Since a(n) - b(n) = A000005(n) for n >= 1, to finish the proof, we only need to show that K(x) := 1 + Sum_{n >= 1} a(n)*x^n - Sum_{n >= 1} b(n)*x^n is the g.f. of A000005 (= number of divisors). But it is easy to show that K(x) = 1 + Sum_{k >= 1} x^k/(1 - x^k) = 1 + Sum_{n >= 1} A000005(n)*x^n (Lambert series for the number of divisors function). (End)
%H A049988 Lars Blomberg, <a href="/A049988/b049988.txt">Table of n, a(n) for n = 0..10000</a> (Corrected by _Gus Wiseman_, May 03 2019)
%H A049988 Lars Blomberg, <a href="/A049988/a049988.cs.txt">C# program for calculating b-file</a> (needs to be updated for a(0) = 1 - _Gus Wiseman_, May 07 2019).
%H A049988 Sadek Bouroubi and Nesrine Benyahia Tani, <a href="http://ftp.math.uni-rostock.de/pub/romako/heft64/bou64.pdf">Integer partitions into arithmetic progressions</a>, Rostok. Math. Kolloq. 64 (2009), 11-16.
%H A049988 Sadek Bouroubi and Nesrine Benyahia Tani, <a href="https://www.emis.de/journals/INTEGERS/papers/j7/j7.Abstract.html">Integer partitions into arithmetic progressions with an odd common difference</a>, Integers 9(1) (2009), 77-81.
%H A049988 F. Javier de Vega, <a href="https://arxiv.org/abs/2003.13378">An extension of Furstenberg's theorem of the infinitude of primes</a>, arXiv:2003.13378 [math.NT], 2020.
%H A049988 F. Javier de Vega, <a href="https://arxiv.org/abs/2004.09505">A Complete Solution of the Partitions of a Number into Arithmetic Progressions</a>, arXiv:2004.09505 [math.NT], 2020.
%H A049988 F. Javier de Vega, <a href="https://doi.org/10.17654/0972555523015">On the parabolic partitions of a number</a>, J. Alg., Num. Theor., and Appl. (2023) Vol. 61, No. 2, 135-169.
%H A049988 Graeme McRae, <a href="https://web.archive.org/web/20081122034835/http://2000clicks.com/MathHelp/BasicSequenceA049982.htm">Counting arithmetic sequences whose sum is n</a>.
%H A049988 Graeme McRae, <a href="/A049988/a049988.pdf">Counting arithmetic sequences whose sum is n</a> [Cached copy]
%H A049988 Augustine O. Munagi, <a href="https://www.emis.de/journals/INTEGERS/papers/k7/k7.Abstract.html">Combinatorics of integer partitions in arithmetic progression</a>, Integers 10(1) (2010), 73-82.
%H A049988 Augustine O. Munagi and Temba Shonhiwa, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL11/Shonhiwa/shonhiwa13.html">On the partitions of a number into arithmetic progressions</a>, Journal of Integer Sequences 11 (2008), Article 08.5.4.
%H A049988 Wikipedia, <a href="https://en.wikipedia.org/wiki/Arithmetic_progression">Arithmetic progression</a>.
%H A049988 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lambert_series">Lambert series</a>.
%H A049988 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts</a>.
%F A049988 G.f.: 1/(1-x) + Sum_{k>=2} x^k/(1-x^(k*(k-1)/2))/(1-x^k). - _Leroy Quet_, Apr 08 2010. [Edited by _Gus Wiseman_, May 03 2019]
%F A049988 a(n) = A049982(n) + A000005(n) = A049980(n) + A000005(n) - 1 for n >= 1. - _Petros Hadjicostas_, Sep 28 2019
%t A049988 a[n_]:=If[n==0,1,Block[{i,c=Floor[(n-1)/2]+DivisorSigma[0,n]},Do[i=1;While[i*k<n,If[Mod[2*(n-i*k),k*(k-1)]==0,c++];i++],{k,3,(Sqrt[1+8*n]-1)/2}];c]];a/@Range[0,73] (* Giovanni Resta,Feb 16 2013. Edited by _Gus Wiseman_, May 07 2019 *)
%t A049988 Table[Length[Select[IntegerPartitions[n],SameQ@@Differences[#]&]],{n,0,30}] (* _Gus Wiseman_, May 03 2019 *)
%o A049988 (PARI) seq(n)={Vec(1/(1-x) + sum(k=2, n, x^k/(1 - x^(k*(k-1)/2))/(1-x^k) + O(x*x^n)))} \\ _Andrew Howroyd_, Sep 28 2019
%Y A049988 Cf. A000005, A000217, A007862, A047966, A049982, A049983, A049986, A049987, A129654, A240026, A240027, A307824, A320466, A325325, A325328.
%K A049988 nonn
%O A049988 0,3
%A A049988 _Clark Kimberling_
%E A049988 Edited by _Max Alekseyev_, May 03 2010
%E A049988 a(0) = 1 prepended by _Gus Wiseman_, May 03 2019