cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049989 a(n) is the number of arithmetic progressions of positive integers, nondecreasing with sum <= n.

This page as a plain text file.
%I A049989 #44 Sep 30 2019 01:25:18
%S A049989 1,3,6,10,14,21,26,33,42,51,58,72,80,91,107,120,130,150,161,178,199,
%T A049989 215,228,255,272,290,316,338,354,389,406,429,460,483,508,549,569,594,
%U A049989 630,663,685,731,754,785,833,863,888,940,969,1007,1054,1090,1118,1175,1212,1253,1305,1342,1373,1444,1476,1515,1577,1621
%N A049989 a(n) is the number of arithmetic progressions of positive integers, nondecreasing with sum <= n.
%H A049989 Andrew Howroyd, <a href="/A049989/b049989.txt">Table of n, a(n) for n = 1..10000</a>
%H A049989 Sadek Bouroubi and Nesrine Benyahia Tani, <a href="http://ftp.math.uni-rostock.de/pub/romako/heft64/bou64.pdf">Integer partitions into arithmetic progressions</a>, Rostok. Math. Kolloq. 64 (2009), 11-16.
%H A049989 Sadek Bouroubi and Nesrine Benyahia Tani, <a href="https://www.emis.de/journals/INTEGERS/papers/j7/j7.Abstract.html">Integer partitions into arithmetic progressions with an odd common difference</a>, Integers 9(1) (2009), 77-81.
%H A049989 Graeme McRae, <a href="https://web.archive.org/web/20081122034835/http://2000clicks.com/MathHelp/BasicSequenceA049982.htm">Counting arithmetic sequences whose sum is n</a>.
%H A049989 Graeme McRae, <a href="/A049988/a049988.pdf">Counting arithmetic sequences whose sum is n</a> [Cached copy]
%H A049989 Augustine O. Munagi, <a href="http://www.emis.de/journals/INTEGERS/papers/k7/k7.Abstract.html">Combinatorics of integer partitions in arithmetic progression</a>, Integers 10(1) (2010), 73-82.
%H A049989 Augustine O. Munagi and Temba Shonhiwa, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL11/Shonhiwa/shonhiwa13.html">On the partitions of a number into arithmetic progressions</a>, Journal of Integer Sequences 11 (2008), Article 08.5.4.
%H A049989 A. N. Pacheco Pulido, <a href="http://www.bdigital.unal.edu.co/7753/">Extensiones lineales de un poset y composiciones de números multipartitos</a>, Maestría thesis, Universidad Nacional de Colombia, 2012.
%H A049989 Wikipedia, <a href="https://en.wikipedia.org/wiki/Arithmetic_progression">Arithmetic progression</a>.
%H A049989 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts</a>.
%F A049989 From _Petros Hadjicostas_, Sep 29 2019: (Start)
%F A049989 a(n) = Sum_{k = 1..n} A049988(k). [Note that the offset of A049988 is 0.]
%F A049989 G.f.: (-1 + g.f. of A049988)/(1-x). (End)
%o A049989 (PARI) seq(n)={my(w=(sqrtint(8*n+1)-1)\2+1); Vec(x/(1-x)^2 + sum(k=2, n, x^k/(1 - if(k<=w, x^(k*(k-1)/2)))/(1-x^k) + O(x*x^n))/(1-x))} \\ _Andrew Howroyd_, Sep 28 2019
%Y A049989 Cf. A047966, A049982, A049983, A049984, A049986, A049987, A129654, A240026, A240027, A307824, A320466, A325325, A325328.
%K A049989 nonn
%O A049989 1,2
%A A049989 _Clark Kimberling_
%E A049989 More terms from _Petros Hadjicostas_, Sep 28 2019