cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050035 a(n) = a(n-1) + a(m) for n >= 4, where m = 2*n - 2 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 3.

This page as a plain text file.
%I A050035 #17 May 15 2020 10:25:06
%S A050035 1,1,3,4,8,9,13,22,44,45,49,58,80,125,183,308,616,617,621,630,652,697,
%T A050035 755,880,1188,1805,2435,3132,4012,5817,8949,14766,29532,29533,29537,
%U A050035 29546,29568,29613,29671,29796,30104,30721,31351
%N A050035 a(n) = a(n-1) + a(m) for n >= 4, where m = 2*n - 2 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = a(2) = 1 and a(3) = 3.
%H A050035 Ivan Neretin, <a href="/A050035/b050035.txt">Table of n, a(n) for n = 1..8193</a>
%t A050035 Fold[Append[#1, #1[[-1]] + #1[[#2]]] &, {1, 1, 3}, Flatten@Table[2 k, {n, 5}, {k, 2^n}]] (* _Ivan Neretin_, Sep 06 2015 *)
%o A050035 (PARI) lista(nn) = {nn = max(nn, 3); my(va = vector(nn)); va[1] = 1; va[2] = 1; va[3] = 3; for(n=4, nn, va[n] = va[n-1] + va[2*(n - 1 - 2^logint(n-2, 2))]); va; } \\ _Petros Hadjicostas_, May 15 2020
%Y A050035 Cf. A050027, A050031, A050039, A050043, A050047, A050051, A050055, A050059, A050063, A050067, A050071 (similar, but with different initial conditions).
%K A050035 nonn
%O A050035 1,3
%A A050035 _Clark Kimberling_
%E A050035 Name edited by _Petros Hadjicostas_, May 15 2020