A050163 T(n, k) = S(2n+2, n+2, k+2) for 0<=k<=n and n >= 0, array S as in A050157.
1, 3, 4, 9, 14, 15, 28, 48, 55, 56, 90, 165, 200, 209, 210, 297, 572, 726, 780, 791, 792, 1001, 2002, 2639, 2912, 2989, 3002, 3003, 3432, 7072, 9620, 10880, 11320, 11424, 11439, 11440, 11934, 25194, 35190, 40698, 42942, 43605
Offset: 0
Examples
Triangle starts: 1 3, 4 9, 14, 15 28, 48, 55, 56 90, 165, 200, 209, 210 297, 572, 726, 780, 791, 792 1001, 2002, 2639, 2912, 2989, 3002, 3003
Crossrefs
Programs
-
Maple
A050163 := (n, k) -> binomial(2*n+2, n) - binomial(2*n+2, n+k+3): seq(seq(A050163(n,k), k=0..n), n=0..8); # Peter Luschny, Dec 21 2017
Formula
T(n, k) = Sum_{0<=j<=k} t(n, j), array t as in A050155.
T(n, k) = binomial(2*n+2, n) - binomial(2*n+2, n+k+3). - Peter Luschny, Dec 21 2017