This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A050176 #16 May 30 2022 13:25:43 %S A050176 1,1,1,1,1,1,1,2,2,1,1,3,2,3,1,1,4,5,5,4,1,1,5,9,5,9,5,1,1,6,14,14,14, %T A050176 14,6,1,1,7,20,28,14,28,20,7,1,1,8,27,48,42,42,48,27,8,1,1,9,35,75,90, %U A050176 42,90,75,35,9,1,1,10,44,110,165,132,132,165,110,44,10,1 %N A050176 T(n,k) = M0(n+1,k,f(n,k)), where M0(p,q,r) is the number of upright paths from (0,0) to (1,0) to (p,p-q) that meet the line y = x-r and do not rise above it and f(n,k) is the least t such that M0(n+1,k,f) is not 0. %C A050176 Let V = (e(1),...,e(n)) consist of q 1's, including e(1) = 1 and p-q 0's; let V(h) = (e(1),...,e(h)) and m(h) = (#1's in V(h)) - (#0's in V(h)) for h = 1,...,n. Then M0(p,q,r) = number of V having r = max{m(h)}. %C A050176 f(n,k) = -1 if 0 <= k <= [(n-1)/2], else f(n,k) = 2*k-n. %H A050176 Bruce E. Sagan and Joshua P. Swanson, <a href="https://arxiv.org/abs/2205.14078">q-Stirling numbers in type B</a>, arXiv:2205.14078 [math.CO], 2022. %e A050176 Rows: %e A050176 1; %e A050176 1, 1; %e A050176 1, 1, 1; %e A050176 1, 2, 2, 1; %e A050176 1, 3, 2, 3, 1; %e A050176 1, 4, 5, 5, 4, 1; %e A050176 1, 5, 9, 5, 9, 5, 1; %e A050176 1, 6, 14, 14, 14, 14, 6, 1; %e A050176 1, 7, 20, 28, 14, 28, 20, 7, 1; %e A050176 1, 8, 27, 48, 42, 42, 48, 27, 8, 1; %e A050176 ... %e A050176 (all palindromes) %Y A050176 Cf. A008313. %K A050176 nonn,tabl %O A050176 1,8 %A A050176 _Clark Kimberling_