cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A130513 Subtriangle of triangle in A051168: remove central column of A051168 and all columns to the right; now read by upwards diagonals.

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 5, 2, 1, 0, 14, 7, 3, 1, 0, 42, 20, 9, 3, 1, 0, 132, 66, 30, 12, 4, 1, 0, 429, 212, 99, 40, 15, 4, 1, 0, 1430, 715, 333, 143, 55, 18, 5, 1, 0, 4862, 2424, 1144, 497, 200, 70, 22, 5, 1, 0, 16796, 8398, 3978, 1768, 728, 273, 91, 26, 6, 1, 0, 58786, 29372, 13995
Offset: 1

Views

Author

Philippe Deléham, Aug 08 2007

Keywords

Examples

			Triangle T(n,k), 1<=k<=n, begins:
1;
1, 0;
2, 1, 0;
5, 2, 1, 0;
14, 7, 3, 1, 0;
42, 20, 9, 3, 1, 0;
132, 66, 30, 12, 4, 1, 0;
429, 212, 99, 40, 15, 4, 1, 0;
		

References

  • A. Errera, Analysis situs: Un problème d'énumération, Memoires Acad. Bruxelles (1931), Serie 2, Vol. 11, No. 6, 26pp.

Crossrefs

Programs

  • Mathematica
    Table[1/(2n-k) Plus@@ (MoebiusMu[ # ]Binomial[(2n-k)/#,(n-k)/# ]&/@ Divisors[GCD[2n-k,n-k]]),{n,12},{k,n}] (* Wouter Meeussen, Jul 20 2008 *)

Formula

Sum_{k, 1<=k<=n} T(n,k) = A022553(n); Sum_{k, 1<=k<=n}k*T(n,k) = A002996(n).
T(n,k) = 1/(2n-k) Sum( d | gcd(2n-k,n-k) = mu(d) C((2n-k)/d,(n-k)/d) ). - Wouter Meeussen, Jul 20 2008

Extensions

Edited by N. J. A. Sloane, Oct 08 2007
Showing 1-1 of 1 results.