This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A050213 #23 Feb 16 2025 08:32:40 %S A050213 24,120,720,5040,40320,362880,72576,3628800,1330560,39916800,20338560, %T A050213 479001600,303937920,6227020800,4643084160,87178291200,73721007360, %U A050213 1743565824,1307674368000,1224694598400,69742632960,20922789888000 %N A050213 Triangle of number of permutations of {1, 2, ..., n} having exactly k cycles, each of which is of length >=r for r=5. %C A050213 Generalizes Stirling numbers of the first kind. %D A050213 L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 257. %H A050213 Alois P. Heinz, <a href="/A050213/b050213.txt">Rows n = 5..300, flattened</a> %H A050213 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PermutationCycle.html">Permutation Cycle.</a> %e A050213 Triangle begins: %e A050213 05: 24; %e A050213 06: 120; %e A050213 07: 720; %e A050213 08: 5040; %e A050213 09: 40320; %e A050213 10: 362880, 72576; %e A050213 11: 3628800, 1330560; %e A050213 12: 39916800, 20338560; %p A050213 b:= proc(n) option remember; expand(`if`(n=0, 1, add( %p A050213 b(n-i)*x*binomial(n-1, i-1)*(i-1)!, i=5..n))) %p A050213 end: %p A050213 T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)): %p A050213 seq(T(n), n=5..20); # _Alois P. Heinz_, Sep 25 2016 %t A050213 b[n_] := b[n] = Expand[If[n == 0, 1, Sum[b[n - i]*x*Binomial[n - 1, i - 1]* (i - 1)!, {i, 5, n}]]]; %t A050213 T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][ b[n]]; %t A050213 T /@ Range[5, 20] // Flatten (* _Jean-François Alcover_, Dec 08 2019, after _Alois P. Heinz_ *) %Y A050213 Cf. A008275, A008306, A050211, A050212. %K A050213 nonn,tabf %O A050213 5,1 %A A050213 _Eric W. Weisstein_ %E A050213 Offset changed from 1 to 5 by _Alois P. Heinz_, Sep 25 2016