cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050224 1/2-Smith numbers.

This page as a plain text file.
%I A050224 #36 Mar 13 2025 12:11:42
%S A050224 88,169,286,484,598,682,808,844,897,961,1339,1573,1599,1878,1986,2266,
%T A050224 2488,2626,2662,2743,2938,3193,3289,3751,3887,4084,4444,4642,4738,
%U A050224 4804,4972,4976,4983,5566,5665,5764,5797,5863
%N A050224 1/2-Smith numbers.
%H A050224 Amiram Eldar, <a href="/A050224/b050224.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Harvey P. Dale)
%H A050224 Shyam Sunder Gupta, <a href="http://www.shyamsundergupta.com/smith.htm">Smith Numbers</a>.
%H A050224 Shyam Sunder Gupta, <a href="https://doi.org/10.1007/978-981-97-2465-9_4">Smith Numbers</a>, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 4, 127-157.
%H A050224 Wayne L. McDaniel, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/25-1/mcdaniel.pdf">The Existence of infinitely Many k-Smith numbers</a>, Fibonacci Quarterly, Vol. 25, No. 1 (1987), pp. 76-80.
%H A050224 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SmithNumber.html">Smith Numbers</a>
%e A050224 88 is a 2^(-1) Smith number because the digit sum of 88, i.e., S(88) = 8 + 8 = 16, which is equal to twice the sum of the digits of its prime factors, i.e., 2 * Sp (88) = 2 * Sp (11 * 2 * 2 * 2) = 2 * (1 + 1 + 2 + 2 + 2) = 16.
%t A050224 snoQ[n_]:=Total[IntegerDigits[n]]==2Total[Flatten[IntegerDigits/@ Flatten[ Table[First[#],{Last[#]}]&/@FactorInteger[n]]]]; Select[Range[ 6000], snoQ] (* _Harvey P. Dale_, Oct 15 2011 *)
%Y A050224 Cf. A006753, A050225.
%K A050224 nonn,base
%O A050224 1,1
%A A050224 _Eric W. Weisstein_
%E A050224 More terms from _Shyam Sunder Gupta_, Mar 11 2005