This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A050279 #49 Feb 16 2025 08:32:40 %S A050279 32,307,601,13390,17534,1699927,3794572,172330850,2542542102, %T A050279 8324296435,371247087572,1755524129973,3186699229890,6381820482331 %N A050279 a(n) is the starting position of the first occurrence of a string of at least n '0's in the decimal expansion of Pi. %C A050279 At least up to a(10), also the starting position of the first occurrence of a string of exactly n '0's in the decimal expansion of Pi, cf. A096764. - _M. F. Hasler_, Mar 19 2017, edited Sep 03 2017 %C A050279 a(15) > 22*10^12. - _Dmitry Petukhov_, Jan 28 2020 %D A050279 Shigeru Kondo, calculation of Pi to 12.8 * 10^9 digits, using the program PiFast of Xavier Gourdon %H A050279 David G. Andersen, <a href="http://www.angio.net/pi/piquery">The Pi-Search Page</a>. %H A050279 Peter TrĂ¼b, <a href="https://pi2e.ch/blog/2017/03/10/pi-digits-download/">22.4 trillion digits of pi</a> %H A050279 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PiDigits.html">Pi Digits</a> %Y A050279 See A096764 for another version. %Y A050279 Cf. A000796: Decimal expansion (or digits) of Pi. %Y A050279 First occurrence of exactly n times the same digit: A096755 (exactly n '1's), A096756, A096757, A096758, A096759, A096760, A096761, A096762, A096763 (exactly n '9's), A096764 (exactly n '0's). %Y A050279 First occurrence of n times the same digit: A035117 (n '1's), A050281 (n '2's), A050282, A050283, A050284, A050286, A050287, A048940 (n '9's). %Y A050279 First occurrence of concatenate(1,...,n): A121280 = A068987 - 1. %K A050279 nonn,base,more %O A050279 1,1 %A A050279 _Eric W. Weisstein_ %E A050279 More terms from Colin B. Martin (martinc(AT)ram.net.au), Nov 25 2001 %E A050279 Edited by _N. J. A. Sloane_ at the suggestion of _M. F. Hasler_, Aug 24 2007 %E A050279 Edited by _M. F. Hasler_, Mar 19 2017 %E A050279 Definition modified by _N. J. A. Sloane_, Sep 03 2017 %E A050279 a(11)-a(14) added by _Dmitry Petukhov_, Jan 12 2020