This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A050291 #41 Feb 16 2025 08:32:40 %S A050291 1,2,3,6,10,20,30,60,96,192,288,576,960,1920,2880,5760,9360,18720, %T A050291 28080,56160,93600,187200,280800,561600,898560,1797120,2695680, %U A050291 5391360,8985600,17971200,26956800,53913600,87091200,174182400,261273600,522547200,870912000 %N A050291 Number of double-free subsets of {1, 2, ..., n}. %C A050291 A set is double-free if it does not contain both x and 2x. %C A050291 So these are equally "half-free" subsets. - _Gus Wiseman_, Jul 08 2019 %D A050291 Wang, E. T. H. ``On Double-Free Sets of Integers.'' Ars Combin. 28, 97-100, 1989. %H A050291 Alois P. Heinz, <a href="/A050291/b050291.txt">Table of n, a(n) for n = 0..4030</a> (terms n = 1..400 from T. D. Noe) %H A050291 Steven R. Finch, <a href="/FinchTriple.html">Triple-Free Sets of Integers</a> [From Steven Finch, Apr 20 2019] %H A050291 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Double-FreeSet.html">Double-Free Set.</a> %F A050291 a(n) = a(n-1)*Fibonacci(b(2n)+2)/Fibonacci(b(2n)+1), Fibonacci = A000045, b = A007814. %F A050291 a(n) = 2^n - A088808(n). - _Reinhard Zumkeller_, Oct 19 2003 %e A050291 From _Gus Wiseman_, Jul 08 2019: (Start) %e A050291 The a(0) = 1 through a(5) = 20 double-free subsets: %e A050291 {} {} {} {} {} {} %e A050291 {1} {1} {1} {1} {1} %e A050291 {2} {2} {2} {2} %e A050291 {3} {3} {3} %e A050291 {1,3} {4} {4} %e A050291 {2,3} {1,3} {5} %e A050291 {1,4} {1,3} %e A050291 {2,3} {1,4} %e A050291 {3,4} {1,5} %e A050291 {1,3,4} {2,3} %e A050291 {2,5} %e A050291 {3,4} %e A050291 {3,5} %e A050291 {4,5} %e A050291 {1,3,4} %e A050291 {1,3,5} %e A050291 {1,4,5} %e A050291 {2,3,5} %e A050291 {3,4,5} %e A050291 {1,3,4,5} %e A050291 (End) %p A050291 a:= proc(n) option remember; `if`(n=0, 1, (F-> (p-> a(n-1)*F(p+3) %p A050291 /F(p+2))(padic[ordp](n, 2)))(j-> (<<0|1>, <1|1>>^j)[1, 2])) %p A050291 end: %p A050291 seq(a(n), n=0..50); # _Alois P. Heinz_, Jan 16 2019 %t A050291 a[n_] := a[n] = (b = IntegerExponent[2n, 2]; a[n-1]*Fibonacci[b+2]/Fibonacci[b+1]); a[1]=2; Table[a[n], {n, 1, 34}] (* _Jean-François Alcover_, Oct 10 2012, from first formula *) %t A050291 Table[Length[Select[Subsets[Range[n]],Intersection[#,#/2]=={}&]],{n,0,10}] (* _Gus Wiseman_, Jul 08 2019 *) %o A050291 (PARI) first(n)=my(v=vector(n)); v[1]=2; for(k=2,n, v[k]=v[k-1]*fibonacci(valuation(k,2)+3)/fibonacci(valuation(k,2)+2)); v \\ _Charles R Greathouse IV_, Feb 07 2017 %Y A050291 Cf. A000045, A007814, A050292-A050296. %Y A050291 Cf. A007865, A103580, A120641, A308546, A320340, A323092, A326083, A326115. %K A050291 nonn,easy,nice %O A050291 0,2 %A A050291 _Eric W. Weisstein_ %E A050291 Extended with formula by _Christian G. Bower_, Sep 15 1999 %E A050291 a(0)=1 prepended by _Alois P. Heinz_, Jan 16 2019