This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A050294 #35 Feb 16 2025 08:32:40 %S A050294 1,2,2,3,4,4,5,6,7,8,9,9,10,11,11,12,13,14,15,16,16,17,18,18,19,20,20, %T A050294 21,22,22,23,24,24,25,26,27,28,29,29,30,31,31,32,33,34,35,36,36,37,38, %U A050294 38,39,40,40,41,42,42,43,44,44,45,46,47,48,49,49,50,51,51,52,53,54,55 %N A050294 Maximum cardinality of a 3-fold-free subset of {1, 2, ..., n}. %C A050294 For a given r>1, a set is r-fold-free if it does not contain any subset of the form {x, r*x}. %C A050294 If r is in A050376, then an r-fold-free set with the highest cardinality is obtained by removing from {1,...,n} all numbers for which r is an infinitary divisor (for the definition of the infinitary divisor of n, see comment to A037445). In general, an r-fold-free set with the highest cardinality is obtained by removing from {1,...,n} all numbers for which r is an oex divisor (for the definition of the oex divisor of n, see A186643). - _Vladimir Shevelev_ Feb 22 2011 and Feb 28 2011. %C A050294 Equals A051068 shifted by 1. - _Michel Dekking_, Feb 18 2019 %H A050294 Steven R. Finch, <a href="/FinchTriple.html">Triple-Free Sets of Integers</a> [From Steven Finch, Apr 20 2019] %H A050294 Bruce Reznick, <a href="http://www.jstor.org/stable/2690562">Problem 1440</a>, Mathematics Magazine, Vol. 67 (1994). %H A050294 B. Reznick and R. Holzsager, <a href="http://www.jstor.org/stable/2691384">r-fold free sets of positive integers</a>, Math. Magazine 68 (1995) 71-72. %H A050294 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Triple-FreeSet.html">Triple-Free Set.</a> %F A050294 Take r = 3 in a(n) = (r n + sum [k = 0 to m] (-1)^k b(k)) / (r + 1), where [b(m) b(m-1) ... b(0)] is the base-r representation of n. - _Rob Pratt_, Apr 21 2004 %F A050294 Take r=3 in a(n) = n-a(floor(n/r)); a(n)=n-floor(n/r)+floor(n/r^2)-floor(n/r^3)+... [_Vladimir Shevelev_, Feb 22 2011]. %e A050294 a(26)=26-a(floor(26/3))=26-a(8)=26-6=20. %o A050294 (PARI) a(n)=if(n==0,0,n-a(floor(n/3))); \\ _Joerg Arndt_, Apr 27 2013 %Y A050294 Cf. A050291-A050296. %K A050294 nonn %O A050294 1,2 %A A050294 _Eric W. Weisstein_ %E A050294 More terms from _John W. Layman_, Oct 25 2002 %E A050294 Corrected and edited by _Steven Finch_, Feb 25 2009