cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050297 Number of scalars which can be constructed from the Riemann tensor and metric tensor in n dimensions.

This page as a plain text file.
%I A050297 #31 May 22 2025 08:33:55
%S A050297 0,1,3,14,40,90,175,308,504,780,1155,1650,2288,3094,4095,5320,6800,
%T A050297 8568,10659,13110,15960,19250,23023,27324,32200,37700,43875,50778,
%U A050297 58464,66990,76415,86800,98208,110704,124355,139230,155400,172938
%N A050297 Number of scalars which can be constructed from the Riemann tensor and metric tensor in n dimensions.
%H A050297 G. C. Greubel, <a href="/A050297/b050297.txt">Table of n, a(n) for n = 1..5000</a>
%H A050297 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RiemannTensor.html">Riemann Tensor</a>.
%H A050297 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F A050297 a(2) = 1, otherwise a(n) = n*(n-1)*(n-2)*(n+3)/12 = A005701(n-3).
%F A050297 From _Chai Wah Wu_, Aug 31 2016: (Start)
%F A050297 a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 7.
%F A050297 G.f.: x^2*(x^5 - 5*x^4 + 10*x^3 - 9*x^2 + 2*x - 1)/(x - 1)^5. (End)
%F A050297 From _Amiram Eldar_, May 22 2025: (Start)
%F A050297 Sum_{n>=2} 1/a(n) = 437/300.
%F A050297 Sum_{n>=2} (-1)^n/a(n) = 1547/300 - 32*log(2)/5. (End)
%t A050297 CoefficientList[Series[x^2*(x^5 - 5*x^4 + 10*x^3 - 9*x^2 + 2*x - 1)/(x - 1)^5, {x, 0, 50}], x] (* _G. C. Greubel_, May 12 2017 *)
%t A050297 Join[{0, 1}, Table[n (n - 1) (n - 2) (n + 3) / 12, {n, 3, 40}]] (* _Vincenzo Librandi_, May 13 2017 *)
%o A050297 (PARI) my(x='x+O('x^50)); concat([0], Vec(x^2*(x^5-5*x^4+10*x^3-9*x^2+2*x-1)/(x-1)^5)) \\ _G. C. Greubel_, May 12 2017
%o A050297 (Magma) [0,1] cat [n*(n-1)*(n-2)*(n+3)/12: n in [3..60]]; // _Vincenzo Librandi_, May 13 2017
%Y A050297 Cf. A005701.
%K A050297 nonn,easy
%O A050297 1,3
%A A050297 _Eric W. Weisstein_