This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A050322 #19 Jan 13 2020 13:54:31 %S A050322 1,1,2,2,3,4,5,7,5,7,9,12,11,11,16,19,21,15,29,26,30,15,31,38,22,47, %T A050322 52,45,36,57,64,30,77,98,67,74,97,66,105,42,109,118,92,109,171,97,141, %U A050322 162,137,165,56,212,181,52,198,189,289,139,250,257,269,254,77,382,267 %N A050322 Number of factorizations indexed by prime signatures: A001055(A025487). %C A050322 For A025487(m) = 2^k = A000079(k), we have a(m) = A000041(k). %C A050322 Is a(k) = A000110(k) for A025487(m) = A002110(k)? %H A050322 R. J. Mathar and Michael De Vlieger, <a href="/A050322/b050322.txt">Table of n, a(n) for n = 1..5000</a> (First 300 terms from _R. J. Mathar_) %H A050322 R. E. Canfield, P. Erdős and C. Pomerance, <a href="http://math.dartmouth.edu/~carlp/PDF/paper39.pdf">On a Problem of Oppenheim concerning "Factorisatio Numerorum"</a>, J. Number Theory 17 (1983), 1-28. %H A050322 Jun Kyo Kim, <a href="https://doi.org/10.1006/jnth.1998.2238">On highly factorable numbers</a>, Journal Of Number Theory, Vol. 72, No. 1 (1998), pp. 76-91. %e A050322 From _Gus Wiseman_, Jan 13 2020: (Start) %e A050322 The a(1) = 1 through a(11) = 9 factorizations: %e A050322 {} 2 4 6 8 12 16 24 30 32 36 %e A050322 2*2 2*3 2*4 2*6 2*8 3*8 5*6 4*8 4*9 %e A050322 2*2*2 3*4 4*4 4*6 2*15 2*16 6*6 %e A050322 2*2*3 2*2*4 2*12 3*10 2*2*8 2*18 %e A050322 2*2*2*2 2*2*6 2*3*5 2*4*4 3*12 %e A050322 2*3*4 2*2*2*4 2*2*9 %e A050322 2*2*2*3 2*2*2*2*2 2*3*6 %e A050322 3*3*4 %e A050322 2*2*3*3 %e A050322 (End) %p A050322 A050322 := proc(n) %p A050322 A001055(A025487(n)) ; %p A050322 end proc: # _R. J. Mathar_, May 25 2017 %t A050322 c[1, r_] := c[1, r] = 1; c[n_, r_] := c[n, r] = Module[{d, i}, d = Select[Divisors[n], 1 < # <= r &]; Sum[c[n/d[[i]], d[[i]]], {i, 1, Length[d]}]]; Map[c[#, #] &, Union@ Table[Times @@ MapIndexed[If[n == 1, 1, Prime[First@ #2]]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]], {n, Product[Prime@ i, {i, 6}]}]] (* _Michael De Vlieger_, Jul 10 2017, after _Dean Hickerson_ at A001055 *) %t A050322 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A050322 Length/@facs/@First/@GatherBy[Range[1000],If[#==1,{},Sort[Last/@FactorInteger[#]]]&] (* _Gus Wiseman_, Jan 13 2020 *) %Y A050322 Cf. A000041, A000079, A000110, A001055, A002110, A025487. %Y A050322 The version indexed by unsorted prime signature is A331049. %Y A050322 The version indexed by prime shadow (A181819, A181821) is A318284. %Y A050322 This sequence has range A045782 (same as A001055). %Y A050322 Cf. A033833, A045778, A045783, A070175, A181821, A325238, A330972, A330973, A330976, A330989, A330990, A330998, A331050. %K A050322 nonn %O A050322 1,3 %A A050322 _Christian G. Bower_, Oct 15 1999