This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A050326 #24 Oct 10 2017 04:09:02 %S A050326 1,1,1,0,1,2,1,0,0,2,1,1,1,2,2,0,1,1,1,1,2,2,1,0,0,2,0,1,1,5,1,0,2,2, %T A050326 2,1,1,2,2,0,1,5,1,1,1,2,1,0,0,1,2,1,1,0,2,0,2,2,1,4,1,2,1,0,2,5,1,1, %U A050326 2,5,1,0,1,2,1,1,2,5,1,0,0,2,1,4,2,2,2,0,1,4,2,1,2,2,2,0,1,1,1,1,1,5,1 %N A050326 Number of factorizations of n into distinct squarefree numbers > 1. %C A050326 a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24=2^3*3 and 375=3*5^3 both have prime signature (3,1). %C A050326 a(A212164(n)) = 0; a(A212166(n)) = 1; a(A006881(n)) = 2; a(A190107(n)) = 3; a(A085987(n)) = 4; a(A225228(n)) = 5; a(A179670(n)) = 7; a(A162143(n)) = 8; a(A190108(n)) = 11; a(A212167(n)) > 0; a(A212168(n)) > 1. - _Reinhard Zumkeller_, May 03 2013 %C A050326 The comment that a(A212164(n)) = 0 is incorrect. For example, 3600 belongs to A212164 but a(3600) = 1. The positions of zeros in this sequence are A293243. - _Gus Wiseman_, Oct 10 2017 %H A050326 Reinhard Zumkeller, <a href="/A050326/b050326.txt">Table of n, a(n) for n = 1..10000</a> %F A050326 Dirichlet g.f.: prod{n is squarefree and > 1}(1+1/n^s). %F A050326 a(n) = A050327(A101296(n)). - _R. J. Mathar_, May 26 2017 %e A050326 The a(30) = 5 factorizations are: 2*3*5, 2*15, 3*10, 5*6, 30. The a(180) = 5 factorizations are: 2*3*5*6, 2*3*30, 2*6*15, 3*6*10, 6*30. - _Gus Wiseman_, Oct 10 2017 %p A050326 N:= 1000: # to get a(1)..a(N) %p A050326 A:= Vector(N): %p A050326 A[1]:= 1: %p A050326 for n from 2 to N do %p A050326 if numtheory:-issqrfree(n) then %p A050326 S:= [$1..N/n]; T:= n*S; A[T]:= A[T]+A[S] %p A050326 fi; %p A050326 od: %p A050326 convert(A,list); # _Robert Israel_, Oct 10 2017 %t A050326 sqfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]]; %t A050326 Table[Length[sqfacs[n]],{n,100}] (* _Gus Wiseman_, Oct 10 2017 *) %o A050326 (Haskell) %o A050326 import Data.List (subsequences, genericIndex) %o A050326 a050326 n = genericIndex a050326_list (n-1) %o A050326 a050326_list = 1 : f 2 where %o A050326 f x = (if x /= s then a050326 s %o A050326 else length $ filter (== x) $ map product $ %o A050326 subsequences $ tail $ a206778_row x) : f (x + 1) %o A050326 where s = a046523 x %o A050326 -- _Reinhard Zumkeller_, May 03 2013 %Y A050326 Cf. A001055, A005117, A045778, A046523, A050320, A050327, a(p^k)=0 (p>1), a(A002110)=A000110, a(n!)=A103775(n), A206778, A293243. %K A050326 nonn %O A050326 1,6 %A A050326 _Christian G. Bower_, Oct 15 1999