A050327 Number of factorizations into distinct squarefree factors indexed by prime signatures. A050326(A025487).
1, 1, 0, 2, 0, 1, 0, 0, 5, 0, 1, 0, 4, 0, 0, 0, 1, 0, 0, 5, 0, 15, 0, 0, 0, 0, 2, 0, 16, 0, 0, 0, 0, 0, 0, 7, 0, 8, 0, 0, 1, 0, 23, 0, 0, 0, 1, 0, 5, 0, 0, 0, 0, 52, 14, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 68, 3, 0, 4, 0, 0, 40, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 41
Offset: 1
Keywords
Examples
From _Michael De Vlieger_, Oct 06 2017: (Start) First 20 values, with numbers in column "r" records, and the last column the concatenation of exponents of standard form prime decomposition of A025487(n): . n a(n) r A025487(n) rev(A054841(A025487(n))) -------------------------------------------- 1 1 1 1 0 2 1 2 1 3 0 4 2 4 2 2 6 11 5 0 8 3 6 1 12 21 7 0 16 4 8 0 24 31 9 5 3 30 111 10 0 32 5 11 1 36 22 12 0 48 41 13 4 60 211 14 0 64 6 15 0 72 32 16 0 96 51 17 1 120 311 18 0 128 7 19 0 144 42 20 5 180 221 21 0 192 61 22 15 4 210 1111 (End)
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..500
- Michael De Vlieger, Relations between A050327, A025487, and A002110.
Programs
-
Mathematica
f[n_] := If[n <= 1, {{}}, Join @@ Table[Map[Prepend[#, d] &, Select[f[n/d], Min @@ # > d &]], {d, Select[Rest@ Divisors@ n, SquareFreeQ]}]]; Length[f@ #] & /@ Prepend[#, 1] &@ Sort@ Map[Times @@ Flatten@ MapIndexed[ConstantArray[Prime@ First@ #2, #1] &, #] &, Union@ Table[Sort[FactorInteger[n][[All, -1]], Greater], {n, 2, Product[Prime@ i, {i, 7}]}]] (* Michael De Vlieger, Oct 06 2017, after Gus Wiseman at A293243 *)
Comments