This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A050334 #18 Jan 03 2021 15:56:33 %S A050334 1,1,1,1,1,2,1,2,1,2,1,4,1,2,2,3,1,4,1,4,2,2,1,8,1,2,2,4,1,7,1,5,2,2, %T A050334 2,10,1,2,2,8,1,7,1,4,4,2,1,15,1,4,2,4,1,8,2,8,2,2,1,18,1,2,4,8,2,7,1, %U A050334 4,2,7,1,23,1,2,4,4,2,7,1,15,3,2,1,18,2,2,2,8,1,18,2,4,2,2,2,28,1,4,4 %N A050334 Number of ordered factorizations of n into numbers with an odd number of prime divisors (prime factors counted with multiplicity). %C A050334 a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1). %H A050334 R. J. Mathar, <a href="/A050334/b050334.txt">Table of n, a(n) for n = 1..10000</a> %F A050334 Dirichlet g.f.: 1/(1-B(s)) where B(s) is D.g.f. of characteristic function of A026424 (essentially A066829). %F A050334 a(p^k) = A000045(k). %F A050334 a(A002110(k)) = A006154(k). %F A050334 a(n) = A050335(A101296(n)). - _R. J. Mathar_, May 26 2017 %e A050334 From _R. J. Mathar_, May 25 2017: (Start) %e A050334 a(p) = 1: factorizations p. %e A050334 a(p^2) = 1: factorizations p*p. %e A050334 a(p^3) = 2: factorizations p^3, p*p*p. %e A050334 a(p^4) = 3: factorizations p^3*p, p*p^3, p*p*p*p. %e A050334 a(p^5) = 5: factorizations p^5, p^3*p*p, p*p^3*p, p*p*p^3, p*p*p*p*p. %e A050334 a(p*q) = 2: factorizations p*q, q*p. (End) %p A050334 read(transforms): %p A050334 A066829m := proc(n) %p A050334 if n = 1 or isA026424(n) then %p A050334 1; %p A050334 else %p A050334 0; %p A050334 end if; %p A050334 end proc: %p A050334 [1,seq(-A066829m(n),n=2..10000)] ; %p A050334 DIRICHLETi(%) ; # _R. J. Mathar_, May 25 2017 %Y A050334 Cf. A002033, A026424, A050333. %K A050334 nonn %O A050334 1,6 %A A050334 _Christian G. Bower_, Oct 15 1999