This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A050342 #27 Jun 25 2025 19:10:33 %S A050342 1,1,1,3,4,7,12,19,30,49,77,119,186,286,438,670,1014,1528,2300,3437, %T A050342 5119,7603,11241,16564,24343,35650,52058,75820,110115,159510,230522, %U A050342 332324,477994,686044,982519,1404243,2003063,2851720,4052429,5748440,8140007,11507125 %N A050342 Expansion of Product_{m>=1} (1+x^m)^A000009(m). %C A050342 Number of partitions of n into distinct parts with one level of parentheses. Each "part" in parentheses is distinct from all others at the same level. Thus (2+1)+(1) is allowed but (2)+(1+1) and (2+1+1) are not. %H A050342 Alois P. Heinz, <a href="/A050342/b050342.txt">Table of n, a(n) for n = 0..4000</a> %H A050342 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %F A050342 Weigh transform of A000009. %e A050342 4=(4)=(3)+(1)=(3+1)=(2+1)+(1). %e A050342 From _Gus Wiseman_, Oct 11 2018: (Start) %e A050342 a(n) is the number of set systems (sets of sets) whose multiset union is an integer partition of n. For example, the a(1) = 1 through a(6) = 12 set systems are: %e A050342 {{1}} {{2}} {{3}} {{4}} {{5}} {{6}} %e A050342 {{1,2}} {{1,3}} {{1,4}} {{1,5}} %e A050342 {{1},{2}} {{1},{3}} {{2,3}} {{2,4}} %e A050342 {{1},{1,2}} {{1},{4}} {{1,2,3}} %e A050342 {{2},{3}} {{1},{5}} %e A050342 {{1},{1,3}} {{2},{4}} %e A050342 {{2},{1,2}} {{1},{1,4}} %e A050342 {{1},{2,3}} %e A050342 {{2},{1,3}} %e A050342 {{3},{1,2}} %e A050342 {{1},{2},{3}} %e A050342 {{1},{2},{1,2}} %e A050342 (End) %p A050342 g:= proc(n, i) option remember; `if`(n=0, 1, %p A050342 `if`(i<1, 0, g(n, i-1)+`if`(i>n, 0, g(n-i, i-1)))) %p A050342 end: %p A050342 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A050342 add(binomial(g(i, i), j)*b(n-i*j, i-1), j=0..n/i))) %p A050342 end: %p A050342 a:= n-> b(n, n): %p A050342 seq(a(n), n=0..50); # _Alois P. Heinz_, May 19 2013 %t A050342 g[n_, i_] := g[n, i] = If[n==0, 1, If[i<1, 0, g[n, i-1] + If[i>n, 0, g[n-i, i-1]]]]; b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[g[i, i], j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* _Jean-François Alcover_, Dec 19 2015, after _Alois P. Heinz_ *) %t A050342 nn=10;Table[SeriesCoefficient[Product[(1+x^k)^PartitionsQ[k],{k,nn}],{x,0,n}],{n,0,nn}] (* _Gus Wiseman_, Oct 11 2018 *) %Y A050342 Cf. A050343-A050350, A089254. %Y A050342 Cf. A001970, A089259, A141268, A258466, A261049, A320328, A320330. %Y A050342 Row sums of A330462 and of A360764. %K A050342 nonn %O A050342 0,4 %A A050342 _Christian G. Bower_, Oct 15 1999