cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050349 Number of ways to factor n into distinct factors with 3 levels of parentheses.

This page as a plain text file.
%I A050349 #12 May 26 2017 04:26:31
%S A050349 1,1,1,1,1,5,1,5,1,5,1,15,1,5,5,11,1,15,1,15,5,5,1,45,1,5,5,15,1,35,1,
%T A050349 25,5,5,5,65,1,5,5,45,1,35,1,15,15,5,1,130,1,15,5,15,1,45,5,45,5,5,1,
%U A050349 145,1,5,15,60,5,35,1,15,5,35,1,240,1,5,15,15,5,35,1,130,11,5,1,145,5
%N A050349 Number of ways to factor n into distinct factors with 3 levels of parentheses.
%C A050349 a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).
%H A050349 R. J. Mathar, <a href="/A050349/b050349.txt">Table of n, a(n) for n = 1..1727</a>
%F A050349 Dirichlet g.f.: Product_{n>=2}(1+1/n^s)^A050347(n).
%F A050349 a(n) = A050350(A101296(n)). - _R. J. Mathar_, May 26 2017
%e A050349 6 = (((6))) = (((3*2))) = (((3)*(2))) = (((3))*((2))) = (((3)))*(((2))).
%Y A050349 Cf. A045778, A050345-A050350. a(p^k)=A050344. a(A002110)=A000357.
%K A050349 nonn
%O A050349 1,6
%A A050349 _Christian G. Bower_, Oct 15 1999