This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A050358 #13 Feb 02 2019 08:25:57 %S A050358 1,1,1,5,1,9,1,25,5,9,1,65,1,9,9,125,1,65,1,65,9,9,1,425,5,9,25,65,1, %T A050358 121,1,625,9,9,9,605,1,9,9,425,1,121,1,65,65,9,1,2625,5,65,9,65,1,425, %U A050358 9,425,9,9,1,1145,1,9,65,3125,9,121,1,65,9,121,1,4825,1,9,65,65,9,121 %N A050358 Number of ordered factorizations of n with 3 levels of parentheses. %C A050358 a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1). %C A050358 The Dirichlet inverse is given by A050356, turning all but the first element of A050356 negative. - _R. J. Mathar_, Jul 15 2010 %H A050358 R. J. Mathar, <a href="/A050358/b050358.txt">Table of n, a(n) for n = 1..899</a> %F A050358 Dirichlet g.f.: (4-3*zeta(s))/(5-4*zeta(s)). %F A050358 a(n) = A050359(A101296(n)). - _R. J. Mathar_, May 26 2017 %F A050358 Sum_{k=1..n} a(k) ~ -n^r / (16*r*Zeta'(r)), where r = 2.7884327053324956670606046076818023223650950899573090550836329583345... is the root of the equation Zeta(r) = 5/4. - _Vaclav Kotesovec_, Feb 02 2019 %e A050358 6 = (((6))) = (((3*2))) = (((2*3))) = (((3)*(2))) = (((2)*(3))) = (((3))*((2))) = (((2))*((3))) = (((3)))*(((2))) = (((2)))*(((3))). %Y A050358 Cf. A002033, A050351-A050359. a(p^k)=5^(k-1). a(A002110)=A050353. %K A050358 nonn %O A050358 1,4 %A A050358 _Christian G. Bower_, Oct 15 1999