cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050361 Number of factorizations into distinct prime powers greater than 1.

This page as a plain text file.
%I A050361 #40 Jun 12 2025 10:24:31
%S A050361 1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,2,1,1,2,1,1,1,1,3,1,1,
%T A050361 1,1,1,1,1,2,1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,2,1,1,1,1,1,1,1,4,1,1,1,1,
%U A050361 1,1,1,2,1,1,1,1,1,1,1,2,2,1,1,1,1,1,1,2,1,1,1,1,1,1,1,3,1,1,1
%N A050361 Number of factorizations into distinct prime powers greater than 1.
%C A050361 a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).
%C A050361 The number of unordered factorizations of n into 1 and exponentially odd prime powers, i.e., p^e where p is a prime and e is odd (A246551). - _Amiram Eldar_, Jun 12 2025
%H A050361 Antti Karttunen, <a href="/A050361/b050361.txt">Table of n, a(n) for n = 1..100000</a> (first 10000 terms from Reinhard Zumkeller)
%H A050361 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>.
%F A050361 Dirichlet g.f.: Product_{n is a prime power >1}(1 + 1/n^s).
%F A050361 Multiplicative with a(p^e) = A000009(e).
%F A050361 a(A002110(k))=1.
%F A050361 a(n) = A050362(A101296(n)). - _R. J. Mathar_, May 26 2017
%F A050361 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} f(1/p) = 1.26020571070524171076..., where f(x) = (1-x) * Product_{k>=1} (1 + x^k). - _Amiram Eldar_, Oct 03 2023
%e A050361 From _Gus Wiseman_, Jul 30 2022: (Start)
%e A050361 The A000688(216) = 9 factorizations of 216 into prime powers are:
%e A050361   (2*2*2*3*3*3)
%e A050361   (2*2*2*3*9)
%e A050361   (2*2*2*27)
%e A050361   (2*3*3*3*4)
%e A050361   (2*3*4*9)
%e A050361   (2*4*27)
%e A050361   (3*3*3*8)
%e A050361   (3*8*9)
%e A050361   (8*27)
%e A050361 Of these, the a(216) = 4 strict cases are:
%e A050361   (2*3*4*9)
%e A050361   (2*4*27)
%e A050361   (3*8*9)
%e A050361   (8*27)
%e A050361 (End)
%p A050361 A050361 := proc(n)
%p A050361     local a,f;
%p A050361     if n = 1 then
%p A050361         1;
%p A050361     else
%p A050361         a := 1 ;
%p A050361         for f in ifactors(n)[2] do
%p A050361             a := a*A000009(op(2,f)) ;
%p A050361         end do:
%p A050361     end if;
%p A050361 end proc: # _R. J. Mathar_, May 25 2017
%t A050361 Table[Times @@ PartitionsQ[Last /@ FactorInteger[n]], {n, 99}] (* _Arkadiusz Wesolowski_, Feb 27 2017 *)
%o A050361 (Haskell)
%o A050361 a050361 = product . map a000009 . a124010_row
%o A050361 -- _Reinhard Zumkeller_, Aug 28 2014
%o A050361 (PARI)
%o A050361 A000009(n,k=(n-!(n%2))) = if(!n,1,my(s=0); while(k >= 1, if(k<=n, s += A000009(n-k,k)); k -= 2); (s));
%o A050361 A050361(n) = factorback(apply(A000009,factor(n)[,2])); \\ _Antti Karttunen_, Nov 17 2019
%Y A050361 Cf. A000009, A050360, A050362, A050363, A050364, A101296, A246551.
%Y A050361 Cf. A124010.
%Y A050361 This is the strict case of A000688.
%Y A050361 Positions of 1's are A004709, complement A046099.
%Y A050361 The case of primes (instead of prime-powers) is A008966, non-strict A000012.
%Y A050361 The non-strict additive version allowing 1's A023893, ranked by A302492.
%Y A050361 The non-strict additive version is A023894, ranked by A355743.
%Y A050361 The additive version (partitions) is A054685, ranked by A356065.
%Y A050361 The additive version allowing 1's is A106244, ranked by A302496.
%Y A050361 A001222 counts prime-power divisors.
%Y A050361 A005117 lists all squarefree numbers.
%Y A050361 A034699 gives maximal prime-power divisor.
%Y A050361 A246655 lists all prime-powers (A000961 includes 1), towers A164336.
%Y A050361 A296131 counts twice-factorizations of type PQR, non-strict A295935.
%Y A050361 Cf. A001970, A002110, A025487, A055887, A063834, A076610, A085970, A279786, A302590, A302601, A354911, A355742.
%K A050361 nonn,easy,mult
%O A050361 1,8
%A A050361 _Christian G. Bower_, Oct 15 1999