cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050363 Number of ordered factorizations into prime powers greater than 1.

This page as a plain text file.
%I A050363 #29 Jan 03 2021 15:56:41
%S A050363 1,1,1,2,1,2,1,4,2,2,1,5,1,2,2,8,1,5,1,5,2,2,1,12,2,2,4,5,1,6,1,16,2,
%T A050363 2,2,14,1,2,2,12,1,6,1,5,5,2,1,28,2,5,2,5,1,12,2,12,2,2,1,18,1,2,5,32,
%U A050363 2,6,1,5,2,6,1,37,1,2,5,5,2,6,1,28,8,2,1,18,2,2,2,12,1,18,2,5,2,2,2,64
%N A050363 Number of ordered factorizations into prime powers greater than 1.
%C A050363 a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).
%C A050363 The Dirichlet inverse is in A010055, turning all but the first element in A010055 negative. - _R. J. Mathar_, Jul 15 2010
%C A050363 Not multiplicative: a(6) =2 <> a(2)*a(3) = 1*1. - _R. J. Mathar_, May 25 2017
%H A050363 R. J. Mathar, <a href="/A050363/b050363.txt">Table of n, a(n) for n = 1..5000</a>
%F A050363 Dirichlet g.f.: 1/(1-B(s)) where B(s) is D.g.f. of characteristic function of prime powers >1.
%F A050363 a(p^k) = 2^(k-1).
%F A050363 a(A002110(k)) = k!.
%F A050363 a(n) = A050364(A101296(n)). - _R. J. Mathar_, May 26 2017
%F A050363 G.f. A(x) satisfies: A(x) = x + Sum_{p prime, k>=1} A(x^(p^k)). - _Ilya Gutkovskiy_, May 11 2019
%e A050363 From _R. J. Mathar_, May 25 2017: (Start)
%e A050363 a(p^2)  = 2: factorizations p^2, p*p.
%e A050363 a(p^3)  = 4: factorizations p^3, p^2*p, p*p^2, p*p*p.
%e A050363 a(p*q)  = 2: factorizations p*q, q*p.
%e A050363 a(p*q^2)= 5: factorizations p*q^2, q^2*p, p*q*q, q*p*q, q*q*p. (End)
%p A050363 read(transforms) ;
%p A050363 [1,seq(-A010055(n),n=2..100)] ;
%p A050363 DIRICHLETi(%) ; # _R. J. Mathar_, May 25 2017
%Y A050363 Cf. A000961, A050360, A050361, A050362, A050363, A050364, A076277.
%K A050363 nonn
%O A050363 1,4
%A A050363 _Christian G. Bower_, Oct 15 1999