This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A050377 #53 Mar 21 2025 11:54:21 %S A050377 1,1,1,2,1,1,1,2,2,1,1,2,1,1,1,4,1,2,1,2,1,1,1,2,2,1,2,2,1,1,1,4,1,1, %T A050377 1,4,1,1,1,2,1,1,1,2,2,1,1,4,2,2,1,2,1,2,1,2,1,1,1,2,1,1,2,6,1,1,1,2, %U A050377 1,1,1,4,1,1,2,2,1,1,1,4,4,1,1,2,1,1,1,2,1,2,1,2,1,1,1,4,1,2,2,4,1,1,1,2,1 %N A050377 Number of ways to factor n into "Fermi-Dirac primes" (members of A050376). %C A050377 a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3 * 3 and 375 = 3 * 5^3 both have prime signature (3,1). %H A050377 Antti Karttunen, <a href="/A050377/b050377.txt">Table of n, a(n) for n = 1..100000</a> (the first 10000 terms from Reinhard Zumkeller) %H A050377 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>. %F A050377 Dirichlet g.f.: Product_{n in A050376} (1/(1-1/n^s)). %F A050377 a(p^k) = A000123([k/2]) for all primes p. %F A050377 a(A002110(n)) = 1. %F A050377 Multiplicative with a(p^e) = A018819(e). - _Christian G. Bower_ and _David W. Wilson_, May 22 2005 %F A050377 a(n) = Sum{a(d): d^2 divides n}, a(1) = 1. - _Reinhard Zumkeller_, Jul 12 2007 %F A050377 a(A108951(n)) = A330690(n). - _Antti Karttunen_, Dec 28 2019 %F A050377 a(n) = 1 for all squarefree values of n (A005117). - _Eric Fox_, Feb 03 2020 %F A050377 G.f.: Sum_{k>=1} a(k) * x^(k^2) / (1 - x^(k^2)). - _Ilya Gutkovskiy_, Nov 25 2020 %F A050377 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} f(1/p) = 1.7876368001694456669... (A382295), where f(x) = (1-x) / Product_{k>=0} (1 - x^(2^k)). - _Amiram Eldar_, Oct 03 2023 %p A050377 A018819:= proc(n) option remember; %p A050377 if n::odd then procname(n-1) %p A050377 else procname(n-1) + procname(n/2) %p A050377 fi %p A050377 end proc: %p A050377 A018819(0):= 1: %p A050377 f:= n -> mul(A018819(s[2]),s=ifactors(n)[2]): %p A050377 seq(f(n),n=1..100); # _Robert Israel_, Jan 14 2016 %t A050377 b[0] = 1; b[n_] := b[n] = b[n - 1] + If[EvenQ[n], b[n/2], 0]; %t A050377 a[n_] := Times @@ (b /@ FactorInteger[n][[All, 2]]); %t A050377 Array[a, 102] (* _Jean-François Alcover_, Jan 27 2018 *) %o A050377 (PARI) %o A050377 A018819(n) = if( n<1, n==0, if( n%2, A018819(n-1), A018819(n/2)+A018819(n-1))); \\ From A018819 %o A050377 A050377(n) = factorback(apply(e -> A018819(e), factor(n)[, 2])); \\ _Antti Karttunen_, Dec 28 2019 %Y A050377 Cf. A000123, A001055, A002110, A005117, A018819, A050376-A050380, A025487. %Y A050377 Cf. A108951, A330687 (positions of records), A330688 (record values), A330689, A330690, A382295. %K A050377 nonn,easy,mult %O A050377 1,4 %A A050377 _Christian G. Bower_, Nov 15 1999 %E A050377 More terms from _Antti Karttunen_, Dec 28 2019