This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A050402 #30 Feb 16 2025 08:32:40 %S A050402 7,1,35,121,743,3561,18995,96433,500871,2573905,13292995,68492073, %T A050402 353290343,1821383097,9392360019,48428332641,249716406791, %U A050402 1287608913057,6639354593123,34234612471001,176524935990503,910219628918665,4693389213891699,24200638961917201 %N A050402 Number of independent sets of nodes in C_4 X C_n (n > 2). %H A050402 Colin Barker, <a href="/A050402/b050402.txt">Table of n, a(n) for n = 0..1000</a> %H A050402 C. Bautista-Ramos and C. Guillen-Galvan, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Bautista/bautista4.html">Fibonacci numbers of generalized Zykov sums</a>, J. Integer Seq., 15 (2012), Article 12.7.8 %H A050402 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IndependentVertexSet.html">Independent Vertex Set</a> %H A050402 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TorusGridGraph.html">Torus Grid Graph</a> %H A050402 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,15,8,-7,-2,1). %F A050402 a(n) = a(n-1) + 17*a(n-2) + 23*a(n-3) + a(n-4) - 9*a(n-5) - a(n-6) + a(n-7). %F A050402 G.f.: (7 -13*x -72*x^2 -20*x^3 +17*x^4 +x^5)/((1+x)*(1+2*x-x^2)*(1-5*x-x^2+x^3)). - _Colin Barker_, Aug 31 2012 %p A050402 seq(coeff(series((7-13*x-72*x^2-20*x^3+17*x^4+x^5)/((1+x)*(1+2*x-x^2) *(1-5*x-x^2+x^3)), x, n+1), x, n), n = 0 ..30); # _G. C. Greubel_, Oct 30 2019 %t A050402 CoefficientList[Series[(7 -13*x -72*x^2 -20*x^3 +17*x^4 +x^5)/((1+x)*(1+2*x-x^2)*(1-5*x-x^2+x^3)), {x, 0, 30}], x] %o A050402 (PARI) Vec((7-13*x-72*x^2-20*x^3+17*x^4+x^5)/((1+x)*(1+2*x-x^2)*(1-5*x- x^2+x^3)) + O(x^30)) \\ _Colin Barker_, May 11 2017 %o A050402 (Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (7 -13*x -72*x^2 -20*x^3 +17*x^4 +x^5)/((1+x)*(1+2*x-x^2)*(1-5*x-x^2+x^3)) )); // _G. C. Greubel_, Oct 30 2019 %o A050402 (Sage) %o A050402 def A050402_list(prec): %o A050402 P.<x> = PowerSeriesRing(ZZ, prec) %o A050402 return P((7 -13*x -72*x^2 -20*x^3 +17*x^4 +x^5)/((1+x)*(1+2*x-x^2)*(1-5*x-x^2+x^3))).list() %o A050402 A050402_list(30) # _G. C. Greubel_, Oct 30 2019 %o A050402 (GAP) a:=[7,1,35,121,743,3561];; for n in [7..30] do a[n]:=2*a[n-1] +15*a[n-2]+8*a[n-3]-7*a[n-4]-2*a[n-5]-a[n-6]; od; a; # _G. C. Greubel_, Oct 30 2019 %K A050402 easy,nonn %O A050402 0,1 %A A050402 _Stephen G Penrice_, Dec 21 1999 %E A050402 More terms from Michael Lugo (mlugo(AT)thelabelguy.com), Dec 22 1999