This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A050412 #90 Oct 20 2024 23:59:59 %S A050412 1,1,1,2,1,1,2,1,1,2,1,3,4,1,1,2,2,1,2,1,1,4,1,3,2,1,3,4,1,1,2,2,1,2, %T A050412 1,1,2,3,1,2,1,7,24,1,3,4,2,1,2,1,1,2,1,1,2,1,3,12,2,3,4,2,1,4,1,5,2, %U A050412 1,1,2,4,7,2552,1,1,2,2,1,4,3,1,2,1,5,6,1,23,4,1,1,2,3,3,2,1,1,4,1,1 %N A050412 Riesel problem: start with n; repeatedly double and add 1 until reaching a prime. Sequence gives number of steps to reach a prime or 0 if no prime is ever reached. %C A050412 a(n) is the smallest m >= 1 such that (n+1)*2^m - 1 is prime (or 0 if no such prime exists). %C A050412 It is conjectured that n = 509203 is the smallest Riesel number, i.e., n*2^k - 1 is composite for every k>0. - _Robert G. Wilson v_, Mar 01 2015. [This would imply that a(509203) is the first zero term in this sequence. - _N. J. A. Sloane_, Jul 31 2024] %C A050412 Comment from _N. J. A. Sloane_, Aug 01 2024 (Start) %C A050412 Both the Ballinger-Keller and Prime Wiki links assert that 104917*2^340181-1 is prime, but leave open the possibility that there is an m < 340181 which makes 104917*2^m - 1 a prime. %C A050412 This question was finally settled by _Lucas A. Brown_ on Jul 31 2024, who showed that m = 340181 is the smallest value that gives a prime. This implies that a(104917) = 340181. %C A050412 Brown used a Python program (see below), with BPSW for the primality testing and gmpy2 to handle the arithmetic. The program was started on Jul 30 2024 and finished on Jul 31 2024. %C A050412 He reports that it took about 15 hours in wall-clock time, and used 24 threads running in parallel. (End) %H A050412 Robert G. Wilson v, <a href="/A050412/b050412.txt">Table of n, a(n) for n = 1..2291</a> (first 657 terms from T. D. Noe) %H A050412 Ray Ballinger and Wilfrid Keller, <a href="http://www.prothsearch.com/rieselprob.html">The Riesel Problem: Definition and Status</a>, Proth Search Page. %H A050412 Hans Riesel, <a href="/A076337/a076337.pdf">Some large prime numbers</a>. Translated from the Swedish original (Några stora primtal, Elementa 39 (1956), pp. 258-260) by Lars Blomberg. %H A050412 N. J. A. Sloane, <a href="https://www.youtube.com/watch?v=3RAYoaKMckM">A Nasty Surprise in a Sequence and Other OEIS Stories</a>, Experimental Mathematics Seminar, Rutgers University, Oct 10 2024, Youtube video; <a href="https://sites.math.rutgers.edu/~zeilberg/expmath/sloane85BD.pdf">Slides</a> [Mentions this sequence] %H A050412 Prime Wiki, <a href="https://rieselprime.de/ziki/Riesel_prime_2_104917">Riesel primes of the form 104917•2^n-1</a> %F A050412 If a(n) = k with k>1, then a(2n+1) = k-1. - _Robert G. Wilson v_, Mar 01 2015 %F A050412 If a(n) = 0, then a(2n+1) is also 0. Conjecture: If a(n) = 1, then a(2n+1) is not 0. - _Jeppe Stig Nielsen_, Feb 12 2023 %e A050412 For n=4; the smallest m>=1 such that (4+1)*2^m-1 is prime is m=2: 5*2^2-1=19 (prime). - _Jaroslav Krizek_, Feb 13 2011 %p A050412 A050412 := proc(n) %p A050412 local twox1,k ; %p A050412 twox1 := 2*n+1 ; %p A050412 k := 1; %p A050412 while not isprime(twox1) do %p A050412 twox1 := 2*twox1+1 ; %p A050412 k := k+1 ; %p A050412 end do: %p A050412 return k; %p A050412 end proc: # _R. J. Mathar_, Jul 23 2015 %t A050412 a[n_] := Block[{s=n, c=1}, While[ ! PrimeQ[2*s+1], s = 2*s+1; c++]; c]; Table[ a[n], {n, 1, 99} ] (* _Jean-François Alcover_, Feb 06 2012, after Pari *) %t A050412 a[n_] := Block[{k = 1}, While[ !PrimeQ[2^k (n + 1) - 1], k++];k]; Array[a, 100] (* _Robert G. Wilson v_, Feb 14 2015 *) (* Corrected by _Paolo Xausa_, Jul 30 2024 *) %o A050412 (PARI) a(n)=if(n<0,0,s=n; c=1; while(isprime(2*s+1)==0,s=2*s+1; c++); c) %o A050412 (Python, designed specifically for n = 104917) %o A050412 #! /usr/bin/env python3 %o A050412 from labmath import primegen, isprime, mpz, count %o A050412 from multiprocessing import Pool %o A050412 primes = list(primegen(1000000)) %o A050412 def test(n): %o A050412 for p in primes: %o A050412 if (104917 * pow(2, n, p)) % p == 1: %o A050412 return (n, False) %o A050412 return (n, isprime(104917 * mpz(2)**n - 1, tb=[])) %o A050412 with Pool(24) as P: %o A050412 for (n, result) in P.imap(test, count()): %o A050412 print('\b'*80, n, end='', flush=True) %o A050412 if result: %o A050412 break # _Lucas A. Brown_, Aug 01 2024 %Y A050412 Main sequences for Riesel problem: A038699, A040081, A046069, A050412, A052333, A076337, A101036, A108129. %Y A050412 Cf. A051914, A052333 (primes reached), A052334, A052339, A052340, A050413, A078680, A101036. %K A050412 nonn,nice,easy %O A050412 1,4 %A A050412 _Robert G. Wilson v_, Dec 22 1999 %E A050412 More terms from _Christian G. Bower_, Dec 23 1999 %E A050412 Second definition corrected by _Jaroslav Krizek_, Feb 13 2011