This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A050447 #48 Jul 11 2023 12:38:22 %S A050447 1,1,1,1,2,1,1,3,3,1,1,4,6,5,1,1,5,10,14,8,1,1,6,15,30,31,13,1,1,7,21, %T A050447 55,85,70,21,1,1,8,28,91,190,246,157,34,1,1,9,36,140,371,671,707,353, %U A050447 55,1,1,10,45,204,658,1547,2353,2037,793,89,1,1,11,55,285,1086,3164,6405,8272,5864,1782,144,1 %N A050447 Table T(n,m) giving total degree of n-th-order elementary symmetric polynomials in m variables, -1 <= n, 1 <= m, transposed and read by upward antidiagonals. %D A050447 J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. %D A050447 S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 120). %D A050447 Manfred Goebel, Rewriting Techniques and Degree Bounds for Higher Order Symmetric Polynomials, Applicable Algebra in Engineering, Communication and Computing (AAECC), Volume 9, Issue 6 (1999), 559-573. %H A050447 T. D. Noe, <a href="/A050447/b050447.txt">Table of 100 antidiagonals</a> %H A050447 J. Berman and P. Koehler, <a href="/A006356/a006356.pdf">Cardinalities of finite distributive lattices</a>, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy] %H A050447 G. Kreweras, <a href="http://www.numdam.org/item?id=MSH_1976__53__5_0">Les préordres totaux compatibles avec un ordre partiel</a>, Math. Sci. Humaines No. 53 (1976), 5-30. %H A050447 R. P. Stanley, <a href="/A002721/a002721.pdf">Examples of Magic Labelings</a>, Unpublished Notes, 1973. [Cached copy, with permission] See p. 31. %F A050447 See PARI code. See A050446 for recurrence. %F A050447 G.f. for row n >= 0: f(n, x) = (x + f(n-2, x))/(1 - x^2 - x*f(n-2, x)), where f(0, x) = 1 and f(1, x) = 1/(1 - x) [R. P. Stanley]. - _L. Edson Jeffery_, Oct 19 2017 %e A050447 Table begins %e A050447 . 1 1 1 1 1 1 1 1 1 1 %e A050447 . 1 2 3 5 8 13 21 34 55 89 %e A050447 . 1 3 6 14 31 70 157 353 793 1782 %e A050447 . 1 4 10 30 85 246 707 2037 5864 16886 %e A050447 . 1 5 15 55 190 671 2353 8272 29056 102091 %e A050447 . 1 6 21 91 371 1547 6405 26585 110254 457379 %e A050447 . 1 7 28 140 658 3164 15106 72302 345775 1654092 %e A050447 . 1 8 36 204 1086 5916 31998 173502 940005 5094220 %e A050447 . 1 9 45 285 1695 10317 62349 377739 2286648 13846117 %e A050447 . 1 10 55 385 2530 17017 113641 760804 5089282 34053437 %t A050447 nmax = 12; t[n_, m_?Positive] := t[n, m] = t[n, m-1] + Sum[t[2k, m-1]*t[n-1-2k, m], {k, 0, (n-1)/2}]; t[n_, 0]=1; Flatten[ Table[ t[k-1, n-k], {n, 1, nmax}, {k, 1, n}]] (* _Jean-François Alcover_, Nov 14 2011 *) %t A050447 nmax = 10; f[0, x_] := 1; f[1, x_] := 1/(1 - x); f[n_, x_] := (x + f[n - 2, x])/(1 - x^2 - x*f[n - 2, x]); t[n_, m_] := Coefficient[Series[f[n, x], {x, 0, m}], x, m]; Grid[Table[t[n, m], {n, nmax}, {m, 0, nmax - 1}]] (* _L. Edson Jeffery_, Oct 19 2017 *) %o A050447 (PARI) M(n)=matrix(n,n,i,j,if(sign(i+j-n)-1,0,1)); V(n)=vector(n,i,1); P(r,n)=vecmax(V(r)*M(r)^n) \\ P(r,n) is T(n,k); _Benoit Cloitre_, Jan 27 2003 %Y A050447 Rows give A000012, A000045, A006356, A006357, A006358, ... %Y A050447 Columns give A000012, A000027, A000217, A000330, A006322, ... %Y A050447 Cf. A001924, A050446. %K A050447 nonn,easy,nice,tabl %O A050447 0,5 %A A050447 _N. J. A. Sloane_, Dec 23 1999 %E A050447 More terms from _Naohiro Nomoto_, Jul 03 2001