This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A050452 #34 Nov 26 2023 03:06:53 %S A050452 0,0,3,0,0,3,7,0,3,0,11,3,0,7,18,0,0,3,19,0,10,11,23,3,0,0,30,7,0,18, %T A050452 31,0,14,0,42,3,0,19,42,0,0,10,43,11,18,23,47,3,7,0,54,0,0,30,66,7,22, %U A050452 0,59,18,0,31,73,0,0,14,67,0,26,42,71,3,0,0,93,19,18 %N A050452 a(n) = Sum_{d|n, d == 3 (mod 4)} d. %H A050452 Seiichi Manyama, <a href="/A050452/b050452.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from Harvey P. Dale) %H A050452 Mariusz SkaĆba, <a href="http://math.colgate.edu/~integers/u92/u92.pdf">A Note on Sums of Two Squares and Sum-of-divisors Functions</a>, INTEGERS 20A (2020) A92. %F A050452 a(n) = A000593(n) - A050449(n). - _Reinhard Zumkeller_, Apr 18 2006 %F A050452 G.f.: Sum_{k>=1} (4*k - 1)*x^(4*k-1)/(1 - x^(4*k-1)). - _Ilya Gutkovskiy_, Mar 21 2017 %F A050452 Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/48 = 0.205616... (A245058). - _Amiram Eldar_, Nov 26 2023 %p A050452 A050452 := proc(n) %p A050452 a := 0 ; %p A050452 for d in numtheory[divisors](n) do %p A050452 if d mod 4 = 3 then %p A050452 a := a+d ; %p A050452 end if; %p A050452 end do: %p A050452 a; %p A050452 end proc: %p A050452 seq(A050452(n),n=1..40) ; # _R. J. Mathar_, Dec 20 2011 %t A050452 Table[Total[Select[Divisors[n],Mod[#,4]==3&]],{n,80}] (* _Harvey P. Dale_, Jul 07 2013 *) %o A050452 (PARI) a(n) = sumdiv(n, d, d*((d % 4) == 3)); \\ _Amiram Eldar_, Nov 26 2023 %Y A050452 Cf. A000593, A050449, A001842, A035462, A245058. %Y A050452 Cf. Sum_{d|n, d=k-1 mod k} d: A000593 (k=2), A078182 (k=3), this sequence (k=4). %K A050452 nonn,easy %O A050452 1,3 %A A050452 _N. J. A. Sloane_, Dec 23 1999