This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A050460 #24 Nov 06 2023 02:15:23 %S A050460 1,2,3,4,6,6,7,8,10,12,11,12,14,14,18,16,18,20,19,24,22,22,23,24,31, %T A050460 28,30,28,30,36,31,32,34,36,42,40,38,38,42,48,42,44,43,44,60,46,47,48, %U A050460 50,62,54,56,54,60,66,56,58,60,59,72,62,62,73,64,84,68 %N A050460 a(n) = Sum_{d|n, n/d=1 mod 4} d. %C A050460 Not multiplicative: a(3)*a(7) <> a(21), for example. %H A050460 Charles R Greathouse IV, <a href="/A050460/b050460.txt">Table of n, a(n) for n = 1..10000</a> %F A050460 G.f.: Sum_{n>0} n*x^n/(1-x^(4*n)). - _Vladeta Jovovic_, Nov 14 2002 %F A050460 G.f.: Sum_{k>0} x^(4*k-3) / (1 - x^(4*k-3))^2. - _Seiichi Manyama_, Jun 29 2023 %F A050460 from _Amiram Eldar_, Nov 05 2023: (Start) %F A050460 a(n) = A002131(n) - A050464(n). %F A050460 a(n) = A050469(n) + A050464(n). %F A050460 a(n) = (A002131(n) + A050469(n))/2. %F A050460 Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A222183. (End) %p A050460 A050460 := proc(n) %p A050460 a := 0 ; %p A050460 for d in numtheory[divisors](n) do %p A050460 if (n/d) mod 4 = 1 then %p A050460 a := a+d ; %p A050460 end if; %p A050460 end do: %p A050460 a; %p A050460 end proc: %p A050460 seq(A050460(n),n=1..40) ; # _R. J. Mathar_, Dec 20 2011 %t A050460 a[n_] := DivisorSum[n, Boole[Mod[n/#, 4] == 1]*#&]; Array[a, 70] (* _Jean-François Alcover_, Dec 01 2015 *) %o A050460 (PARI) a(n)=sumdiv(n,d,if(n/d%4==1,d)) \\ _Charles R Greathouse IV_, Dec 04 2013 %Y A050460 Cf. A001826, A002131, A050449, A050464, A050469, A222183. %Y A050460 Cf. A050461, A050462, A050463. %K A050460 nonn,easy %O A050460 1,2 %A A050460 _N. J. A. Sloane_, Dec 23 1999