This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A050465 #21 Nov 06 2023 02:17:48 %S A050465 0,0,1,0,0,4,1,0,9,0,1,16,0,4,26,0,0,36,1,0,58,4,1,64,0,0,82,16,0,104, %T A050465 1,0,130,0,26,144,0,4,170,0,0,232,1,16,234,4,1,256,49,0,290,0,0,328, %U A050465 26,64,370,0,1,416,0,4,523,0,0,520,1,0,538,104,1,576,0 %N A050465 a(n) = Sum_{d|n, n/d=3 mod 4} d^2. %H A050465 Reinhard Zumkeller, <a href="/A050465/b050465.txt">Table of n, a(n) for n = 1..10000</a> %F A050465 a(n) = A050461(n) - A050470(n). - _Reinhard Zumkeller_, Mar 06 2012 %F A050465 From _Amiram Eldar_, Nov 05 2023: (Start) %F A050465 a(n) = A076577(n) - A050461(n). %F A050465 a(n) = (A076577(n) - A050470(n))/2. %F A050465 Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = 7*zeta(3)/16 - Pi^3/64 = 0.041426822002... . (End) %t A050465 a[n_] := DivisorSum[n, #^2 &, Mod[n/#, 4] == 3 &]; Array[a, 100] (* _Amiram Eldar_, Nov 05 2023 *) %o A050465 (Haskell) %o A050465 a050465 n = sum [d ^ 2 | d <- a027750_row n, mod (div n d) 4 == 3] %o A050465 -- _Reinhard Zumkeller_, Mar 06 2012 %o A050465 (PARI) a(n) = sumdiv(n, d, (n/d % 4 == 3) * d^2); \\ _Amiram Eldar_, Nov 05 2023 %Y A050465 Cf. A002117, A027750, A050461, A050470, A076577. %Y A050465 Cf. A050464, A050466, A050467. %K A050465 nonn,easy %O A050465 1,6 %A A050465 _N. J. A. Sloane_, Dec 23 1999 %E A050465 Offset fixed by _Reinhard Zumkeller_, Mar 06 2012