This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A050475 #42 Oct 22 2024 03:21:01 %S A050475 3,4,6,8,14,18,20,32,62,90,108,128,522,608,1280,2204,2282,3218,4254, %T A050475 4424,9690,9942,11214,19938,21702,23210,44498,86244,110504,132050, %U A050475 216092,756840,859434,1257788,1398270,2976222,3021378,6972594,13466918,20996012,24036584,25964952,30402458,32582658 %N A050475 Numbers k such that x = 2^k-2 satisfies phi(x)+2 = phi(x+2). %C A050475 Other solutions of this equation are in A001838. %C A050475 Also, numbers k such that 2^(k-1)-1 is prime. Proof: If x = 2^k-2, phi(x)+2 = phi(x+2) <==> phi(2^k-2)+2 = phi(2^k) <==> phi(2(2^(k-1)-1)) + 2 = 2^k(1-1/2) <==> phi(2)*phi(2^(k-1)-1)+2 = 2^(k-1) <==> phi(2^(k-1)-1) = 2^(k-1)-2 if y = 2^(k-1)-1. We have phi(y) = y-1 <==> y=2^(k-1)-1 is prime. Therefore a(n) = A000043(n)+1. - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 19 2004 %H A050475 Amiram Eldar, <a href="/A050475/b050475.txt">Table of n, a(n) for n = 1..48</a> (terms 1..47 from Ivan Panchenko) %F A050475 a(n) = A000043(n) + 1. - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 19 2004 %e A050475 phi(2^18-2)+2 = 131072 = phi(2^18), so 18 is in the sequence. %t A050475 Flatten[Position[EulerPhi[2^# - 2] + 2 == EulerPhi[2^# ] & /@ Range[1, 250], True]] (* Vit Planocka *) %Y A050475 Cf. A000043, A001838. %K A050475 nonn %O A050475 1,1 %A A050475 _Jud McCranie_, Dec 24 1999 %E A050475 a(39)-a(44) from _Ivan Panchenko_, Apr 11 2018