cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050495 Numbers that are the first term of at least one arithmetic progression with 4 or more terms all having the same value of Euler's totient function phi(x).

This page as a plain text file.
%I A050495 #15 Oct 02 2019 01:58:32
%S A050495 72,144,216,216,288,432,432,576,648,648,792,864,864,1080,1152,1224,
%T A050495 1296,1296,1368,1446,1512,1584,1656,1728,1728,1944,1944,2088,2160,
%U A050495 2232,2304,2376,2376,2448,2592,2592,2664,2736,2892,2952,3024,3096,3168
%N A050495 Numbers that are the first term of at least one arithmetic progression with 4 or more terms all having the same value of Euler's totient function phi(x).
%C A050495 A number can occur multiple times, corresponding to the number of these arithmetic progressions that it starts. - _Robert Israel_, Nov 29 2016
%H A050495 Robert Israel, <a href="/A050495/b050495.txt">Table of n, a(n) for n = 1..2704</a>
%e A050495 phi(72) = phi(78) = phi(84) = phi(90) = 24, so 72 is a member of the sequence.
%p A050495 N:= 5000: # to get all terms <= N
%p A050495 AP4:= proc(S) local res, n, i1,i4;
%p A050495    n:= nops(S); res:= NULL;
%p A050495    for i1 from 1 to n-3 do
%p A050495      for i4 from i1+3 to n do
%p A050495        if (S[i1] - S[i4]) mod 3 = 0 and has(S, (2*S[i1]+S[i4])/3) and has(S, (S[i1]+2*S[i4])/3) then res:= res, S[i1]
%p A050495        fi
%p A050495    od od;
%p A050495    [res]
%p A050495 end proc:
%p A050495 Res:= NULL:
%p A050495 for m from 1 to N-1 do
%p A050495   Res:= Res, op(select(`<=`,AP4(numtheory:-invphi(m)),N));
%p A050495 od:
%p A050495 sort([Res]); # _Robert Israel_, Nov 29 2016
%Y A050495 Cf. A000010, A050496, A050497.
%K A050495 nonn
%O A050495 1,1
%A A050495 _Jud McCranie_, Dec 27 1999