This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A050509 #50 Aug 07 2025 04:01:17 %S A050509 1,10,36,88,175,306,490,736,1053,1450,1936,2520,3211,4018,4950,6016, %T A050509 7225,8586,10108,11800,13671,15730,17986,20448,23125,26026,29160, %U A050509 32536,36163,40050,44206,48640,53361,58378,63700,69336,75295,81586,88218,95200,102541 %N A050509 House numbers (version 2): a(n) = (n+1)^3 + (n+1)*Sum_{i=0..n} i. %C A050509 Also as a(n) = (1/6)*(9*n^3 - 3*n^2), n>0: structured pentagonal prism numbers (Cf. A100177 - structured prisms; A100145 for more on structured numbers). - James A. Record (james.record(AT)gmail.com), Nov 07 2004 %C A050509 Number of inequivalent tetrahedral edge colorings using at most n+1 colors so that no color appears only once. - _David Nacin_, Feb 22 2017 %H A050509 Vincenzo Librandi, <a href="/A050509/b050509.txt">Table of n, a(n) for n = 0..5000</a> %H A050509 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A050509 a(n) = A000578(n+1) + (n+1)*A000217(n). %F A050509 a(n) = (1/2)*(3*n+2)*(n+1)^2. %F A050509 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=1, a(1)=10, a(2)=36, a(3)=88. - _Harvey P. Dale_, Jun 26 2011 %F A050509 G.f.: (1+6*x+2*x^2)/(1-x)^4. - _Colin Barker_, Jun 08 2012 %F A050509 a(n) = Sum_{i=0..n} (n+1)*(3*i+1). - _Bruno Berselli_, Sep 08 2015 %F A050509 Sum_{n>=0} 1/a(n) = 9*log(3) - sqrt(3)*Pi - Pi^2/3 = 1.15624437161388... . - _Vaclav Kotesovec_, Oct 04 2016 %F A050509 E.g.f.: exp(x)*(2 + 18*x + 17*x^2 + 3*x^3)/2. - _Elmo R. Oliveira_, Aug 06 2025 %e A050509 * * %e A050509 a(2) = * * + * * = 10. %e A050509 * * * * %t A050509 Table[((1+n)^2*(2+3n))/2,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,10,36,88},40] (* _Harvey P. Dale_, Jun 26 2011 *) %o A050509 (Magma) [(3*n+2)*(n+1)^2/2: n in [0..40]]; // _Vincenzo Librandi_, Jul 19 2011 %o A050509 (PARI) a(n)=(1/2)*(3*n+2)*(n+1)^2 \\ _Charles R Greathouse IV_, Oct 07 2015 %Y A050509 Cf. A000217, A000578, A051662, A100145, A100177. %Y A050509 Cf. similar sequences, with the formula (k*n - k + 2)*n^2/2, listed in A262000. %K A050509 nonn,nice,easy %O A050509 0,2 %A A050509 Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 28 1999