cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050706 Composites c that reach a prime after 2 iterations of c-> c+sum of prime factors of c.

This page as a plain text file.
%I A050706 #19 Sep 08 2022 08:44:58
%S A050706 8,9,18,22,24,25,36,39,40,54,78,80,81,91,94,99,104,106,115,119,121,
%T A050706 122,126,134,138,142,144,146,152,159,164,170,174,187,189,214,218,219,
%U A050706 226,228,231,232,237,250,258,262,264,265,266,272,274,276,280,282,288,289
%N A050706 Composites c that reach a prime after 2 iterations of c-> c+sum of prime factors of c.
%e A050706 226 is a term:
%e A050706 Iteration 1: 226 = 2*113 so 226 + (2+113) = 226 + 115 = 341 and composite.
%e A050706 Iteration 2: 341 = 11*31 so 341 + (11+31) = 341 + 42 = 383 and prime.
%t A050706 aQ[n_]:=PrimeQ[Nest[#+Total[Times@@@FactorInteger[#]]&,n,2]]; Select[Range[289],!PrimeQ[#]&&aQ[#]&] (* _Jayanta Basu_, May 31 2013 *)
%o A050706 (Magma) f:=func<n|n+(&+[j[1]*j[2]: j in Factorization(n)]) >; a:=[]; for k in [4..300] do if not IsPrime(k) and not IsPrime(f(k)) and IsPrime(f(f(k))) then Append(~a, k); end if; end for; a; // _Marius A. Burtea_, Oct 18 2019
%Y A050706 Cf. A050703, A050704, A050705, A050707, A050708, A050709, A050710.
%K A050706 nonn
%O A050706 1,1
%A A050706 _Patrick De Geest_, Aug 15 1999
%E A050706 Name edited by _Michel Marcus_, Oct 18 2019