This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A050727 #22 Mar 08 2024 16:02:58 %S A050727 0,1,2,3,4,8,11,13,14,15,26 %N A050727 Numbers k such that the decimal expansion of 6^k contains no pair of consecutive equal digits (probably finite). %C A050727 No additional terms up to 25000. - _Harvey P. Dale_, Oct 17 2011 %C A050727 No additional terms up to 100000. - _Michel Marcus_, Oct 16 2019 %C A050727 No additional terms up to 10^7. - _Lucas A. Brown_, Mar 02 2024 %e A050727 6^26 = 170581728179578208256 where no consecutive digits are equal. %t A050727 Select[Range[120],!MemberQ[Differences[IntegerDigits[6^#]],0]&] (* _Harvey P. Dale_, Oct 17 2011 *) %o A050727 (PARI) isok(n) = {my(d = digits(6^n), c = d[1]); for (i=2, #d, if (d[i] == c, return (0)); c = d[i];); return (1);} \\ _Michel Marcus_, Oct 16 2019 %o A050727 (Python) %o A050727 try: from gmpy2 import mpz; x = mpz(1) %o A050727 except: x = 1 %o A050727 print(0) %o A050727 k = 1 %o A050727 while True: %o A050727 print('\b'*42 + str(k), end='') %o A050727 x *= 6 # x == 6**k %o A050727 y, flag = x, True %o A050727 y, a = divmod(y, 10) %o A050727 while y > 6: %o A050727 b = a %o A050727 y, a = divmod(y, 10) %o A050727 if a == b: %o A050727 flag = False %o A050727 break %o A050727 if flag: print() %o A050727 k += 1 %o A050727 # _Lucas A. Brown_, Mar 02 2024 %Y A050727 Cf. A000400, A030702, A046264, A046272. %K A050727 nonn,base,more %O A050727 1,3 %A A050727 _Patrick De Geest_, Sep 15 1999