This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A050772 #16 Nov 22 2021 10:10:13 %S A050772 18,24,25,46,57,161,203,209,288,319,323,391,736,798,837,858,928,930, %T A050772 1035,1088,1089,1218,1300,1376,1690,2254,2418,2478,2673,2842,2871, %U A050772 3045,3220,3325,3458,3510,3588,4186,4508,4617,4824,5054,5180,5248,5472,6069 %N A050772 Iterated procedure 'composite k added to sum of its prime factors reaches a prime' yields 5 skipped primes. %H A050772 Robert Israel, <a href="/A050772/b050772.txt">Table of n, a(n) for n = 1..1000</a> %e A050772 18 is a term because 18 + (2+3+3) = 26 + (2+13) = ending prime 41. Between 18 and 41 one finds 5 primes 19, 23, 29, 31 and 37. %p A050772 filter:= proc(n) local r, s, t; %p A050772 if isprime(n) then return false fi; %p A050772 t:= 0: s:= n; %p A050772 do %p A050772 r:= s; %p A050772 s:= s + add(p[1]*p[2],p=ifactors(s)[2]); %p A050772 t:= t + numtheory:-pi(s-1) - numtheory:-pi(r); %p A050772 if isprime(s) then return t=5 fi; %p A050772 if t > 5 then return false fi; %p A050772 od; %p A050772 end proc: %p A050772 select(filter, [$2..10000]); # _Robert Israel_, May 08 2020 %t A050772 ok[n_] := CompositeQ[n] && Block[{k=n, p = NextPrime[n, 6]}, While[k < p, k += Total[ Times @@@ FactorInteger[k]]]; k == p]; Select[Range@ 6069, ok] (* _Giovanni Resta_, May 08 2020 *) %Y A050772 Cf. A050703, A050710. %K A050772 nonn %O A050772 1,1 %A A050772 _Patrick De Geest_, Sep 15 1999 %E A050772 Offset changed to 1 by _Robert Israel_, May 08 2020