This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A050782 #40 Feb 07 2022 03:41:32 %S A050782 0,1,1,1,1,1,1,1,1,1,0,1,21,38,18,35,17,16,14,9,0,12,1,7,29,21,19,37, %T A050782 9,8,0,14,66,1,8,15,7,3,13,15,0,16,6,23,1,13,9,3,44,7,0,19,13,4,518,1, %U A050782 11,3,4,13,0,442,7,4,33,9,1,11,4,6,0,845,88,4,3,7,287,1,11,6,0,12345679,8 %N A050782 Smallest positive multiplier m such that m*n is palindromic (or zero if no such m exists). %C A050782 Multiples of 81 require the largest multipliers. %C A050782 From _Jon E. Schoenfield_, Jan 15 2015: (Start) %C A050782 In general, a(n) is large when n is a multiple of 81. E.g., for n in [1..10000], of the 9000 terms where a(n)>0, 111 are at indices n that are multiples of 81; of the remaining 8889 terms, %C A050782 755 are in [1..9], %C A050782 1760 are in [10..99], %C A050782 3439 are in [100..999], %C A050782 2180 are in [1000..9999], %C A050782 708 are in [10000..99999], %C A050782 36 are in [100000..999999], %C A050782 6 are in [1000000..9999999], %C A050782 2 are in [10000000..99999999], %C A050782 2 are in [100000000..999999999], %C A050782 and 1 (the largest) is a(8891) = 8546948927, %C A050782 but the smallest of the 111 terms whose indices are multiples of 81 is a(2997)=333667. (End) %C A050782 a(n) = 0 iff 10 | n. a(n) = 1 iff n is a palindrome. If k | a(n) then a(k*n) = a(n)/k. - _Robert Israel_, Jan 15 2015 %H A050782 Giovanni Resta, <a href="/A050782/b050782.txt">Table of n, a(n) for n = 0..10000</a> (first 8181 terms from Chai Wah Wu) %H A050782 Patrick De Geest, <a href="http://www.worldofnumbers.com/index.html">World!Of Numbers</a> %e A050782 E.g., a(81) -> 81 * 12345679 = 999999999 and a palindrome. %p A050782 digrev:= proc(n) local L,d,i; %p A050782 L:= convert(n,base,10); %p A050782 d:= nops(L); %p A050782 add(L[i]*10^(d-i),i=1..d); %p A050782 end proc: %p A050782 f:= proc(n) %p A050782 local d,d2,x,t,y; %p A050782 if n mod 10 = 0 then return 0 fi; %p A050782 if n < 10 then return 1 fi; %p A050782 for d from 2 do %p A050782 if d::even then %p A050782 d2:= d/2; %p A050782 for x from 10^(d2-1) to 10^d2-1 do %p A050782 t:= x*10^d2 + digrev(x); %p A050782 if t mod n = 0 then return(t/n) fi; %p A050782 od %p A050782 else %p A050782 d2:= (d-1)/2; %p A050782 for x from 10^(d2-1) to 10^d2-1 do %p A050782 for y from 0 to 9 do %p A050782 t:= x*10^(d2+1)+y*10^d2+digrev(x); %p A050782 if t mod n = 0 then return(t/n) fi; %p A050782 od %p A050782 od %p A050782 fi %p A050782 od; %p A050782 end proc: %p A050782 seq(f(n),n=0 .. 100); # _Robert Israel_, Jan 15 2015 %t A050782 t={0}; Do[i=1; If[IntegerQ[n/10],y=0,While[Reverse[x=IntegerDigits[i*n]]!=x,i++]; y=i]; AppendTo[t,y],{n,80}]; t (* _Jayanta Basu_, Jun 01 2013 *) %o A050782 (Python) %o A050782 from __future__ import division %o A050782 def palgen(l,b=10): # generator of palindromes in base b of length <= 2*l %o A050782 if l > 0: %o A050782 yield 0 %o A050782 for x in range(1,l+1): %o A050782 n = b**(x-1) %o A050782 n2 = n*b %o A050782 for y in range(n,n2): %o A050782 k, m = y//b, 0 %o A050782 while k >= b: %o A050782 k, r = divmod(k,b) %o A050782 m = b*m + r %o A050782 yield y*n + b*m + k %o A050782 for y in range(n,n2): %o A050782 k, m = y, 0 %o A050782 while k >= b: %o A050782 k, r = divmod(k,b) %o A050782 m = b*m + r %o A050782 yield y*n2 + b*m + k %o A050782 def A050782(n, l=10): %o A050782 if n % 10: %o A050782 x = palgen(l) %o A050782 next(x) # replace with x.next() in Python 2.x %o A050782 for i in x: %o A050782 q, r = divmod(i, n) %o A050782 if not r: %o A050782 return q %o A050782 else: %o A050782 return 'search limit reached.' %o A050782 else: %o A050782 return 0 # _Chai Wah Wu_, Dec 30 2014 %Y A050782 Cf. A002113, A020485, A050810. %K A050782 nonn,base,nice %O A050782 0,13 %A A050782 _Patrick De Geest_, Oct 15 1999