A050921 Smallest prime of form n*2^m+1, m >= 0, or 0 if no such prime exists.
2, 3, 7, 5, 11, 7, 29, 17, 19, 11, 23, 13, 53, 29, 31, 17, 137, 19, 1217, 41, 43, 23, 47, 97, 101, 53, 109, 29, 59, 31, 7937, 257, 67, 137, 71, 37, 149, 1217, 79, 41, 83, 43, 173, 89, 181, 47
Offset: 1
Links
- R. J. Mathar, Table of n, a(n) for n = 1..382
Programs
-
Maple
A050921 := proc(n) for m from 0 do if isprime(n*2^m+1) then return n*2^m+1 ; end if; end do; end proc; # R. J. Mathar, Jun 01 2013
-
Mathematica
Do[m = 0; While[ !PrimeQ[n*2^m + 1], m++ ]; Print[n*2^m + 1], {n, 1, 47} ]
Extensions
The next term (47*2^583 + 1) is too large to show.
Comments