cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051010 Triangle T(m,n) giving of number of steps in the Euclidean algorithm for gcd(m,n) with 0<=m

This page as a plain text file.
%I A051010 #22 Feb 16 2025 08:32:41
%S A051010 0,0,1,0,1,2,0,1,1,2,0,1,2,3,2,0,1,1,1,2,2,0,1,2,2,3,3,2,0,1,1,3,1,4,
%T A051010 2,2,0,1,2,1,2,3,2,3,2,0,1,1,2,2,1,3,3,2,2,0,1,2,3,3,2,3,4,4,3,2,0,1,
%U A051010 1,1,1,3,1,4,2,2,2,2,0,1,2,2,2,4,2,3,5,3,3,3,2,0,1,1,3,2,3,2,1,3,4,3
%N A051010 Triangle T(m,n) giving of number of steps in the Euclidean algorithm for gcd(m,n) with 0<=m<n.
%H A051010 T. D. Noe, <a href="/A051010/b051010.txt">Rows n=1..100 of triangle, flattened</a>
%H A051010 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EuclideanAlgorithm.html">Euclidean Algorithm.</a>
%t A051010 t[m_, n_] := For[r[-1]=m; r[0]=n; k=1, True, k++, r[k] = Mod[r[k-2], r[k-1]]; If[r[k] == 0, Return[k-1]]]; Table[ t[m, n] , {n, 1, 14}, {m, 0, n-1}] // Flatten (* _Jean-François Alcover_, Oct 25 2012 *)
%o A051010 (Haskell)
%o A051010 a051010 n k = snd $ until ((== 0) . snd . fst)
%o A051010                     (\((x, y), i) -> ((y, mod x y), i + 1)) ((n, k), 0)
%o A051010 a051010_row n = map (a051010 n) [0..n-1]
%o A051010 a051010_tabl = map a051010_row [1..]
%o A051010 -- _Reinhard Zumkeller_, Jun 27 2013
%Y A051010 Cf. A034883, A051011, A051012.
%Y A051010 Cf. A049826.
%Y A051010 Cf. A130130 (central terms).
%K A051010 nonn,nice,tabl
%O A051010 1,6
%A A051010 _Eric W. Weisstein_