This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051013 #45 Feb 16 2025 08:32:41 %S A051013 1,2,4,7,13,23,40,65,106,169,278,443,705,1117,1760,2692,4151,6314, %T A051013 9526,14127,20944,30848,45589,66495,96847,140840,204380,293822,425859, %U A051013 613446,880288,1258349,1794256,2545965,3623774,5123746,7207773,10159163,14273328,19925242,27893419 %N A051013 Number of nonaveraging subsets on {1,2,...,n}. %H A051013 Fausto A. C. Cariboni, <a href="/A051013/b051013.txt">Table of n, a(n) for n = 0..80</a> %H A051013 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/NonaveragingSequence.html">Nonaveraging Sequence</a> %H A051013 Wikipedia, <a href="https://en.wikipedia.org/wiki/Salem-Spencer_set">Salem-Spencer set</a> %H A051013 <a href="/index/No#non_averaging">Index entries related to non-averaging sequences</a> %F A051013 a(n) = 2^n - A018788(n). - _David Nacin_, Mar 03 2012 %e A051013 The only subset of s = {1,2,3} that contains a 3-term arithmetic progression is s itself, so a(3) = 7. %t A051013 a[n_] := a[n] = 2^n - Count[Subsets[Range[n], {3, n}], {___, a_, ___, b_, ___, c_, ___} /; b-a == c-b]; Table[Print[n, " ", a[n]]; a[n], {n, 0, 32}] (* _Jean-François Alcover_, May 30 2019 *) %o A051013 (Python) %o A051013 # Prints out all such sets %o A051013 def nonaveragingsets(n): %o A051013 avoid=list() %o A051013 for skip in range(1,(n+1)//2): %o A051013 for start in range (1,n+1-2*skip): %o A051013 avoid.append(set({start,start+skip,start+2*skip})) %o A051013 s=list() %o A051013 for i in range(3): %o A051013 for smallset in comb(range(1,n+1),i): %o A051013 s.append(smallset) %o A051013 for i in range(3,n+1): %o A051013 for temptuple in comb(range(1,n+1),i): %o A051013 tempset=set(temptuple) %o A051013 status=True %o A051013 for avoidset in avoid: %o A051013 if avoidset <= tempset: %o A051013 status=False %o A051013 break %o A051013 if status: %o A051013 s.append(tempset) %o A051013 return s %o A051013 # Counts all such sets %o A051013 def a(n): %o A051013 return len(nonaveragingsets(n)) # _David Nacin_, Mar 03 2012 %Y A051013 Cf. A018788. %Y A051013 Row sums of A334187. %Y A051013 First differences give A334893. %K A051013 nonn %O A051013 0,2 %A A051013 _Eric W. Weisstein_ %E A051013 More terms from _John W. Layman_, Nov 27 2001 %E A051013 a(29)-a(37) from _Donovan Johnson_, Aug 15 2010 %E A051013 a(38)-a(40) from _Alois P. Heinz_, Oct 27 2011