This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051014 #31 Feb 16 2025 08:32:41 %S A051014 1,2,3,5,7,11,14,21,27,38,52,73,90,123,159,211,263,344,413,535,658, %T A051014 832,1026,1276,1499,1846,2226,2708,3229,3912,4592,5541,6495,7795,9207, %U A051014 10908,12547,14852,17358,20493,23709,27744,31921,37250,43013,49936,57319,66318 %N A051014 Number of nondividing sets on {1,2,...,n}. %C A051014 A set is called nondividing if no element divides the sum of any nonempty subset of the other elements. %H A051014 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/NondividingSet.html">Nondividing Set</a> %e A051014 a(5) = 11 because there are 11 nondividing subsets of {1,2,3,4,5}: {}, {1}, {2}, {3}, {4}, {5}, {2,3}, {2,5}, {3,4}, {3,5}, {4,5}. %e A051014 a(7) = 21: {}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {2,3}, {2,5}, {2,7}, {3,4}, {3,5}, {3,7}, {4,5}, {4,6}, {4,7}, {5,6}, {5,7}, {6,7}, {4,6,7}. %p A051014 sums:= proc(s) option remember; local i, m; %p A051014 m:= max(s[]); %p A051014 `if`(m<1, {}, {m, seq([i,i+m][], i=sums(s minus {m}))}) %p A051014 end: %p A051014 b:= proc(i,s) option remember; local j, ok, t, si; %p A051014 if i<2 then 1 %p A051014 else si:= s union {i}; %p A051014 ok:= true; %p A051014 for j in sums(si) while ok do %p A051014 for t in si while ok do %p A051014 if irem(j, t)=0 and t<>j then ok:= false fi %p A051014 od %p A051014 od; %p A051014 b(i-1,s) +`if`(ok, b(i-1, si), 0) %p A051014 fi %p A051014 end: %p A051014 a:= n-> `if`(n=0, 1, 1+b(n, {})): %p A051014 seq(a(n), n=0..25); # _Alois P. Heinz_, Mar 08 2011 %t A051014 sums[s_] := sums[s] = Module[{m=Max[s]}, %t A051014 If[m<1, {}, %t A051014 Join[{m}, %t A051014 Sequence@@Table[{i,i+m}, {i,sums[DeleteCases[s,m]]}]]] %t A051014 ]; %t A051014 b[i_,s_] := b[i,s] = Module[{ ok,si,sij,sik}, %t A051014 If[ i<2, 1, si = Union[s,{i}]; %t A051014 ok = True; %t A051014 For[j=1, j <= Length[sums[si]] && ok, j++, %t A051014 sij = sums[si][[j]]; %t A051014 For[k=1, k <= Length[si] && ok, k++, %t A051014 If[Divisible[sij,sik=si[[k]]]&&sij!=sik,ok=False]]]; %t A051014 b[i-1, s] + If[ok, b[i-1,si],0] %t A051014 ] %t A051014 ]; %t A051014 a[n_] := a[n] = If[n==0, 1, 1+b[n, {}]]; %t A051014 Table[ Print[ a[n] ]; a[n], {n,0,47}] %t A051014 (* _Jean-François Alcover_, Oct 10 2012, after _Alois P. Heinz_ *) %Y A051014 Row sums of A187489. Cf. A068063. %K A051014 nonn,nice %O A051014 0,2 %A A051014 _Eric W. Weisstein_ %E A051014 More terms from _David Wasserman_, Feb 15 2002 %E A051014 a(41)-a(47) from _Alois P. Heinz_, Mar 08 2011