cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051021 Decimal expansion of Mills's constant, assuming the Riemann Hypothesis is true.

This page as a plain text file.
%I A051021 #94 Apr 17 2025 07:00:45
%S A051021 1,3,0,6,3,7,7,8,8,3,8,6,3,0,8,0,6,9,0,4,6,8,6,1,4,4,9,2,6,0,2,6,0,5,
%T A051021 7,1,2,9,1,6,7,8,4,5,8,5,1,5,6,7,1,3,6,4,4,3,6,8,0,5,3,7,5,9,9,6,6,4,
%U A051021 3,4,0,5,3,7,6,6,8,2,6,5,9,8,8,2,1,5,0,1,4,0,3,7,0,1,1,9,7,3,9,5,7,0,7,2,9
%N A051021 Decimal expansion of Mills's constant, assuming the Riemann Hypothesis is true.
%C A051021 Not known to be rational or irrational. See Saito (2024) for a new result. - _Charles R Greathouse IV_, Jul 18 2013, _Hugo Pfoertner_, May 01 2024
%D A051021 T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 8.
%D A051021 Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.13, p. 130.
%D A051021 Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 137.
%H A051021 Robert G. Wilson v, <a href="/A051021/b051021.txt">Table of n, a(n) for n = 1..10000</a> (first 641 terms from Tin Apato)
%H A051021 C. K. Caldwell, <a href="https://t5k.org/glossary/page.php?sort=MillsConstant">Mills's Constant</a> [Gives 6000 terms assuming the Riemann Hypothesis.]
%H A051021 Chris K. Caldwell and Yuanyou Chen, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL8/Caldwell/caldwell78.html">Determining Mills' Constant and a Note on Honaker's Problem</a>, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.1.
%H A051021 Christian Elsholtz, <a href="https://arxiv.org/abs/2004.01285">Unconditional Prime-representing Functions, Following Mills</a>, arXiv:2004.01285 [math.NT], 2020.
%H A051021 James Grime and Brady Haran, <a href="http://www.youtube.com/watch?v=6ltrPVPEwfo">Awesome Prime Number Constant</a>, Numberphile video (2013).
%H A051021 Brian Hayes, <a href="http://bit-player.org/2015/pumping-the-primes">Pumping the Primes</a>, bit-player, Aug 19 2015.
%H A051021 Aminu Alhaji Ibrahim and Sa’idu Isah Abubaka, <a href="http://dx.doi.org/10.4236/apm.2016.66028">Aunu Integer Sequence as Non-Associative Structure and Their Graph Theoretic Properties</a>, Advances in Pure Mathematics, 2016, 6, 409-419.
%H A051021 William H. Mills, <a href="http://dx.doi.org/10.1090/S0002-9904-1947-08849-2">A prime-representing function</a>, Bull. Amer. Math. Soc., Vol. 53, No. 6 (1947), p. 604; <a href="https://doi.org/10.1090/S0002-9904-1947-08944-8">Errata</a>, ibid., Vol. 53, No 12 (1947), p. 1196.
%H A051021 Bernard Montaron, <a href="https://arxiv.org/abs/2011.14653">Exponential prime sequences</a>, arXiv:2011.14653 [math.NT], 2020.
%H A051021 Robert P. Munafo, <a href="http://www.mrob.com/pub/math/numbers-2.html">Notable Properties of Specific Numbers</a>.
%H A051021 Simon Plouffe, <a href="https://arxiv.org/abs/2002.12137">The calculation of p(n) and pi(n)</a>, arXiv:2002.12137 [math.NT], 2020.
%H A051021 Kota Saito, <a href="https://arxiv.org/abs/2404.19461">Mills' constant is irrational</a>, arXiv:2404.19461 [math.NT], 2024.
%H A051021 László Tóth, <a href="https://arxiv.org/abs/1801.08014">A Variation on Mills-Like Prime-Representing Functions</a>, arXiv:1801.08014 [math.NT], 2018.
%H A051021 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MillsConstant.html">Mills' Constant</a>.
%H A051021 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeFormulas.html">Prime Formulas</a>.
%e A051021 1.3063778838630806904686144926026057129167845851567136443680537599664340537668...
%t A051021 RealDigits[ Nest[ NextPrime[#^3] &, 2, 7]^(1/3^8), 10, 111][[1]] (* _Robert G. Wilson v_, Nov 14 2012 *)
%o A051021 (PARI) A051021_upto(N=99)=localprec(N+9);digits(10^N*sqrtn(A051254(N=logint(N,3)+2),3^N)\1) \\ _M. F. Hasler_, Sep 11 2024
%Y A051021 Cf. A051254.
%K A051021 nonn,cons
%O A051021 1,2
%A A051021 _Eric W. Weisstein_
%E A051021 More terms from _Robert G. Wilson v_, Sep 08 2000
%E A051021 More terms from Tin Apato (tinapto(AT)yahoo.es), Dec 12 2007